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It is well known that the real and complex numbers in the Scott-Solovay universe 
V C~) of ZFC based on a complete Boolean algebra B are represented by the real- 
valued and complex-valued Borel functions on the Stonean space ~ of B. The 
main purpose of this paper is to show that the separable complex Hilbert spaces 
and the yon Neumann algebras acting on them in V (n~ can be represented by 
reasonable classes of families of complex Hilbert spaces and of yon Neumann 
algebras over ~. This could be regarded as the duality between Boolean-valued 
analysis developed by Ozawa, Takeuti, and others and the traditional reduction 
theory based not on measure spaces but on Stonean spaces. With due regard to 
Ozawa, this duality could pass for a sort of reduction theory for A W*-modules 
over commutative A W*-algebras and embeddable A W*-algebras. Under the 
duality we establish several fundamental correspondence theorems, including the 
type correspondence theorems of factors. 

1. I N T R O D U C T I O N  

M o r e  than  h a l f a  cen tury  ago Stone (1936) es tabl ished a dua l i ty  between 
Boolean  a lgebras  and  a cer ta in  class o f  topo log ica l  spaces.  In the 1960s Scot t  
and  So lovay  used comple te  Boolean  a lgebras  B to bui ld  V <B) as a mode l  o f  
Z F C  and  the former  es tabl ished a dua l i ty  between real  numbers  in V <n) and  
rea l -va lued  Borel funct ions  on the S tonean  space f~ o f  B. This has encour-  
aged some logicians to s tudy  more  compl ica ted  objects  in analysis ,  such as 
complex  Hi lbe r t  spaces, von N e u m a n n  algebras,  etc., by  using Boolean-  
va lued  models  (e.g., Ozawa,  1983, 1984, I985;  Takeu t i ,  1978, 1983). Such 
an a p p r o a c h  is genera l ly  cal led Boo lean :va lued  analysis.  

O p e r a t o r  a lgebrais ts  have used reduct ion  theory  for  decompos ing  such 
compl i ca t ed  objects  as von N e u m a n n  a lgebras  into families o f  s impler  
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von Neumann algebras over some appropriately chosen base space. The 
standard reference for traditional reduction theory is the second part of 
Dixmier (1981). Some operator algebraists such as Tomita (1953), have 
recommended Stonean spaces as base spaces of reduction theory. 

The main purpose of this paper is to establish a duality between separ- 
able complex Hilbert spaces in V (B) and an appropriate class of families of 
complex Hilbert spaces over f~ and a duality between von Neumann algebras 
acting on separable complex Hilbert spaces in V (B) and an adequate class of 
families of von Neumann algebras over ~.  Startlingly enough, the classes of 
families over ~2 in this duality and those studied for a long time in traditional 
reduction theory coincide! Therefore our duality could be regarded as a 
duality between Boolean-valued analysis and reduction theory. Since our 
duality is established under the separability assumption and traditional 
reduction theory is haunted by separability restrictions, this means that 
Boolean-valued analysis is indeed a good generalization of traditional reduc- 
tion theory. 

After reviewing Boolean-valued set theory and Scott's duality men- 
tioned above in Sections 2 and 3, respectively, we present our duality for 
complex Hilbert spaces and yon Neumann algebras in Section 4. The duality 
for von Neumann algebras is much subtler than that for complex Hilbert 
spaces technically. In Sections 8-10 we are concerned with correspondence 
results on such properties as types, commutant, intersection, factor, etc., 
under our duality for yon Neumann algebras. Since Tomita-Takesaki theory 
plays a crucial role in establishing these correspondence results, Sections 
5-7 are devoted to Hilbert algebras, unbounded operators, and left Hilbert 
algebras, respectively. Section 11 shows that, with due regard to Ozawa 
(1984, 1985), our duality could be regarded as a reduction theory for A W*- 
modules over commutative A W*-algebras and embeddable A W*-algebras. 
The last section is devoted to presenting open problems. 

Besides a modest acquaintance with Boolean-valued analysis and reduc- 
tion theory mentioned above, we assume familiarity with the theory of von 
Neumann algebras up to Tomita-Takesaki theory. For Tomita-Takesaki 
theory the standard reference is Takesaki (1970). In Section 4 we need a 
deep result of  topological linear spaces, for which the reader is referred to 
Bourbaki (1953/1955). In Section 9 we need a deep result of Kallman (1971). 
In Section 1 we need two deep results on the so-called Effros Borel structure 
due to Effros (1965) and Nielsen (1973), for which a standard reference is 
Nielsen (1980). 

Now we give some miscellaneous remarks. We use d ,  Jg, ~ ' , . . . ,  
with or without indices for von Neumann algebras, Hilbert algebras, and 
left Hilbert algebras, but the context will prevent any confusion. Similarly, 
we write d '  for the commutant of d in the case that d is avon  Neumann 
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algebra and for the associated right Hilbert algebra in the case ~r is a left 
Hilbert algebra. The unit ball of  a von Neumann algebra d is denoted by 
( d )  l. Orthogonal projections on complex Hilbert spaces are usually referred 
to simply as projections. A linear transformation between complex Hilbert 
spaces is called an operator if they happen to be the same. A o--field 5 on 
a set X is called a measurable structure and the pair (X, 5) is called a 
measurable space. A func t ion f f rom a measurable space (X, ~) to a measur- 
able space ( Y, q]-) is called measurable if f - 1  (T)  s S for any T~ ]]-. 

2. BOOLEAN-VALUED SET THEORY 

Let B be a complete Boolean algebra. We define V~ ) by transfinite 
induction on the ordinal a as follows: 

1. v(0"~: ~. 
2. v(~ n) = {u l u: @(u) ~ B and ~ ( u )  a Ug< ~ v ? ) }  �9 

Then the Boolean-valued universe V (B) of  Scott and Solovay is defined 
as follows: 

v ~"~= U v ~  ~ 
aeOn 

where On is the class of  all ordinal numbers. The class V (n) can be considered 
to be a Boolean-valued model of set theory by defining [uEv~ and Wu=v~ 
for u, w V ~B) with simultaneous induction: 

[[uev]]= sup (v(y) ^ [u=y[]) (1) 
y ~ ( v )  

~u=v]= inf (u(x)~[xev~)^ inf ( v ( y ) ~ e u ] )  (2) 
xe.~(u) y ~ ( v )  

and by assigning a Boolean value [[r to each formula ~0 without free vari- 
ables inductively as follows: 

4. [[Vx~0(x)]] = infu~ v (B)[[q~(u)]. 
5. ~3x~o(x)~ = sup,~ v (B)[[~o(u)]. 

The following theorem is fundamental to Boolean-valued analysis. 

Theorem 2.1. If  q~ is a theorem of  ZFC, then so is [~0~ = 1. 
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The class Vof  all sets can be embedded into V (m by transfinite induction 
as follows: 

1)lxey} for yeV  

Proposition 2. 2. For x, y s V, we have 

[~cE~ = {;  if x s y  
otherwise (3) 

[[2= ~]] = {~ if x = y  
otherwise (4) 

A subset {b~} of B is called a partition of unity if sup~ b~ = 1 and 
b~ A b , = 0  for any a r  Given a partition of unity {b~} and a subset {u~} 
of V (m, one can easily prove the following result. 

Theorem 2.3. There exists an element u of  V (m such that ~u=u~ >b~ 
for any a. Furthermore, this u is determined uniquely in the sense that 
~u = v~ = 1 for any v s V (m with the above property. 

The above u ~s denoted by ~ u~b~. 
�9 v~m X =  {xl respect to We define the interpretation a of ~0(x)} with V ~B) 

to be {usV(m[[rp(u)]=l}, assuming that it is not empty. By way of  
example, N (m and Z (m stand for the totalities of natural numbers and 
integers in V (m. For technical convenience, if X is a set, then X (m is usually 
considered to be a set by choosing a representative from an equivalence 
class {vs V(ml~u = vii = 1}. Then we have X (m x {1 } s V (m and 

• 1 

Let D ~ V (m. A function g: D -} V <m is called extensional if ~d= d'~ < 
~g(d) =g(d')~ for any d, d'ED. A B-valued set us  V <m is said to be definite 
if u ( d ) =  1 for any ds~(u).  Then we have the following characterization 
theorem of  extension maps. 

Theorem 2.4. Let u, w V (m be definite and D=@(u) .  Then there is a 
bijective correspondence be tweenfe  V (m satisfying [If: u ~ v~ = 1 and exten- 
sional maps rp: D ~ v(m, where v (B) = {ulEu s v~ = 1 }. The correspondence is 
given by the relation I f (d)  = ~0(d)~ = 1 for any deD. 

3. REAL A N D  C O M P L E X  N U M B E R S  

Let B be a complete Boolean algebra with its Stonean space ~.  Recall 
that an extremely disconnected compact Hausdorff space is called a Stonean 
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space. We shall fix B and f~ throughout this paper. Then, as is well known, 
there is a bijective correspondence q~0 from B to the clopen sets of ~,  whose 
inverse is denoted by ~0.  Since the lattice of  clopen sets of f~ is isomorphic 
to the lattice of  Borel sets of ~ modulo meager Borel sets, we have the 
following result. 

Theorem 3.1. Each element beB determines a Borel set q)(b) up to 
equivalence, where two Borel sets X, Y are called equivalent if their sym- 
metric difference X O Y is meager. Each Borel set X determines uniquely an 
element ~ ( X )  of  B. We have ~ ( ~ ( b ) ) =  b for any beB,  while ~ ( ~ ( X ) ) = X  
up to equivalence for any Borel set X of  f2. 

This simple duality theorem is the starting point of our duality theory. 
The following well-known theorem claims the duality between the com- 

plex numbers in V ~B) and the complex-valued Borel functions on f~. 

Theorem 3.2. Each complex number r in V ~B~ determines a complex- 
valued Borel function q~(r) on f~ up to equivalence, where two complex- 
valued Borel functions on ~ are called equivalent if they are identical except 
for some meager Borel set of ft. Each complex-valued Borel function f on 

determines uniquely a complex number ~ ( f )  in V ~B~. We have ~ ( ~ ( r ) )  = 
r for any complex number r in V ~B), while q ~ ( ~ ( f ) ) = f u p  to equivalence 
for any complex-valued Borel function f on ~.  

A similar duality theorem holds for the real numbers in V ~B~. 

Theorem 3.3. Each real number r in V ~B) determines a real-valued Borel 
function q~(r) on ~ up to equivalence, where two real-valued Borel functions 
on f~ are called equivalent if they are identical except for some meager Borel 
set of  ~.  Each real-valued Borel function f on f~ determines uniquely a real 
number ~ ( f )  in V ~B~. We have ~F(e#(r))=r for any real number r in 
V ~B~, while @ ( ~ ( f ) )  = f u p  to equivalence for any real-valued Borel function 

f o n  f~. 

Although in this paper we do not use measure theory at all, such a 
convenient expression of measure theory as "for  almost all c0~g2" will be 
used in place of "except for some meager Borel set," since meager Borel sets 
play a similar role to null sets of measure theory. 

Each sequence {f~}i~N of complex-valued Borel functions on f~ corre- 
sponds to a sequence {ri}~s of  complex numbers in V (B). Then we have the 
following result. 

Theorem 3.4. The sequence {ri}~s converges to a complex number r 
in V ~B) iff the sequence {f-(c0)}i~N converges to f(co) for almost all co~f~, 
where q ~ ( r ) = f  



448 Nishimura 

Proof Essentially the same as that of Takeuti (1978, Part I, Chapter 2, 
Proposition 2.1, p. 54). 

A continuous complex-valued functionfdefined on a dense open subset 
fYcf~  is called a normal function on f2 if limo~oylf(co)[=oo for each 
co'~f~\f~'. We know that every complex-valued Borel function on f~ is equal 
almost everywhere to a unique normal function on fL For each complex 
number r in V (B), we denote by q~o(r) the normal function that is equal to 
qb(r) almost everywhere. For more information on normal functions, see 
Kadison and Ringrose (1983/1986, Section 5.6). 

We conclude this section with a technical comment. Usually a subset 
of a topological space is called Borel if it belongs to the o--field generated 
by the open sets, but in the rest of this paper a subset X of the Stonean space 
92 shall be called Borel (in an extended sense) if there is a Borel set Y (in 
the usual sense) such that their symmetric difference X (~ Y is contained in 
some meager Borel set (in the usual sense), while for other topological 
spaces, such as the totality R of real numbers and the totality C of complex 
numbers, our notion of a Borel set shall retain the usual sense. Of course, a 
notion such as a Borel function should be modified accordingly. The reader 
should notice that the above four theorems are unaffected literally by this 
modification. 

4. COMPLEX HILBERT SPACES AND 
V O N  N E U M A N N  ALGEBRAS 

4.1. Hilbert Spaces 

A Borelfield of complex Hilbert spaces over F2 is by definition a family 
{~'4~(co)} o ~  of complex Hilbert spaces together with a family ~ of functions 
on 92 having the following properties: 

I. For every x ~  and every co~92, x(o))~oCY(co). 
II. For every x ~ ,  the function og~f~ ~ IIx(o~)ll is Borel. 

III. ~ is a complex linear space with pointwise addition and scalar 
multiplication. 

IV. I f y  is a function on f~ such that (a) y(co)~Jt'(o)) for every co~92, 
and (b) the function c0Ef~ ~--~ (x(co), y(co)) is Borel for every xE~ ,  then 
y ~ .  

V. There exists a sequence {xi}i~Nc~ such that for every o)~f~, the 
sequence {xi(co)}i~N is total in Jt~(ro) [i.e., the linear span of {x;(o))}i~N is 
dense in Jf(co)]. 
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Each function x defined on ~ such that x(co)eNd(c0) is called a vector 
field. 

Each element of  ~ is called a Borel vectorfieM. 
Such a sequence in condition V is called a fundamental sequence 

of  Borel vector fields. We notice that for any x, y e ~ ,  the function 
co ef~ ~ (x(co), y(co)) is Borel because of  the polarization identity 

4(x(co), y(co)) = [Ix(co) + y(co)II 2 -  IIx(co) -y(co)II 2 

+ illx(co) + iy(co)II 2 -  ilix(co) - iy(co)II 2 

It is also easy to see that i f x e ~ ,  then y is a function on ~ withy(co)eNd(co) 
for every co ef t ,  and x(co)=y(co) almost everywhere, then y e  ~.  We notice 
that the product  of  a complex-valued Borel function and a Borel vector field 
is a Borel vector field. It can be seen easily that if a sequence of Borel vector 
fields converges weakly pointwise on ~,  then its limit is also a Borel vector 
field. 

For  each p = 0, 1 . . . . .  N0, we fix once and for all a complex Hilbert 
space Ndp of  dimension p. We regard f2 as the measurable space whose 
measurable sets are Borel sets, and we regard Ndp as the measurable space 
induced by the weak or strong topology of  Ndp. Since Ndp is separable, 
whether we choose the wea~: topology or the strong one does not matter. 
By taking Nd(co) to be Ndp for any coef~ and taking ~ to be the totality of  
measurable functions from f~ to Ndp, we obtain a Borel field of complex 
Hilbert spaces over f~, which is called the constantfieM of dimension p and 
denoted by .~p(f~ ). 

We notice that our notion of a Borel field of complex Hilbert spaces 
over ~ is no other than Dixmier's (1981, Part II, Chapter 1) notion of  a 
measurable field of complex Hilbert spaces over a measure space adapted 
appropriately to our present context. Hence the four propositions of  Dixmier 
(1981, pp. 166-168) carry over to this context with obvious modifications. 
In particular, given a Borel field .~= ({Nd(co)}o~n, ~ )  of  complex Hilbert 
spaces over f2, the first three of  them go as follows: 

Proposition 4. l. (1) For  eachp = 0, 1, 2 . . . . .  No, the set ~p = {co el2[the 
dimension d(co) of  H(co) is equal to p} is Borel. 

(2) There exists a sequence {Xi}i~N of Borel vector fields such that the 
nonzero terms of the sequence {Xi(CO)}~N form an orthonormal basis of 
Nd(co) for each coef~, i.e., (a) (x i (co) ,x j (co) )=0  for any i r  (b) 
(x~(co),x~(co))=l provided {xi(co), x i ( co ) ) r  for any i eN and (c) the 
sequence {Xi(cO)}~N is total in ~(co) .  

A sequence like {X~(CO)}i~N in part 2 of the above proposition is called 
an orthonormal basic sequence of  ~(((co), while a sequence like {X~}~N in part 
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2 is called a BorelfieM of orthonormal bases. The latter definition is a bit 
weaker than that of Dixmier (1981, p. 166). 

Proposition 4.2. Let {x;}icN be a fundamental sequence of Borel vector 
fields. Then a vector field y is a Borel vector field iff the function 
coef~ ~-~ (y(co), x;(co)) is Borel for any i~N. 

Proposition 4.3. For each coe~ there exists a Hilbert space 
isomorphism r/~, : ~ ( c o ) ~  JC'd~ such that for any function y on ~2 with 
y(co)eJct~ for any coEf~, y e ~  iff the function co~Op~--, q~(y(co)) is 
measurable for any p = 0, 1 . . . .  , No, where Jgp is endowed with the measur- 
able structure consisting of  all Borei subsets of Wp with respect to the weak 
or strong topology and f~p is endowed with the measurable structure consist- 
ing of all Borel subsets of f~p. 

This proposition claims, roughly speaking, that the constant fields are 
typical examples of Borel fields of complex Hilbert spaces over fL 

The last of Dixmier's four propositions mentioned above goes as 
follows: 

Proposition 4.4. Let {Jg'(co)} ~,cn be a family of complex Hilbert spaces 
indexed by {2. Let {xi};~N be a sequence of functions on I) such that 
(a) xi(co)e~(co) for any coef~ and any ieN, (b) the function 
c0ef~--,(xi(co),xj(co)) is Borel for any i, jeN, and (c) the sequence 
(x,(co)}e~N is total in 2//'(o)) for any c0efL Then there exists a unique Borel 
field ({ofg(co)}~o~n, ~ )  of complex Hilbert spaces over f~ such that x~ is a 
Borel vector field for any ieN. 

Two Borel fields ({Jg(co)}o,~a, | and ({Jf(co)}~ocn, 3;) of complex 
Hilbert spaces over f~ are called equivalent if there exist a meager Borel 
subset Z of ~ and a (Hilbert space) isomorphism (00,: ~(co)  ~ )g-(co) for 
every co E f~\Z such that: 

I. For every x e ~  there exists ye2;  satisfying y(co)= ~0o,(x(co)) for 
every co ef2\Z.  

tI. For every y e X  there exists x e ~  satisfying y(co)=q)o~(x(co)) for 
every co ef2\Z. 

Now we would like to establish the duality between the Borel fields of 
complex Hilbert spaces over f~ and the separable complex Hilbert spaces in 
V (Bg. First of all, we will show that each separable complex Hilbert spaces 
~;r in V (B) naturally yields a Borel field q~(o~) of complex Hilbert spaces 
over ft. Let us define 

X(co) = {xe ~ [ q~0(llxll )(co) is defined} 

Y(co) = {xe~lq~o(lixll )(co) is defined and equal to 0} 
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Since I I~x + ~yll--1~1 Ilxl[ + 151 Ilyll in V (n) for any r, s eC  and any x, y e ~,  
it is easy to see that X(co) is a complex linear space and Y(co) is a linear 
subspace of X(og). Let zoo,: X(co) ~ X(co)/Y(o~) be the canonical projection. 
Because of the Cauchy-Schwarz inequality I(x, y>[ < [Ixll Ilyll in V (n) for any 
x, y ea ,  we have that for any coef~ and any x, yeX(co), q~o((X, y))(co) is 
defined. Since 

I(x,y>-(x',y'>l<_ [Ix-x'll  Ilyll + [Ix'[I Ily-y'l l  

in V (B) for any x ,y ,x ' , y ' e~ ,  we have that for any o e ~  and any 
x, y, x', y'eX(co), if Jro,(x) = zro,(x') and Trio(y) = Jr~o(y'), then 

(I)o((X, y))( r  ~o((X', y'))(og) 

Therefore we can safely define an inner product on X(co)/Y(co) by 

(zr~o(x), ~r,o(y))=q)o((x, y) )(w), x, y~X(co) 

The completion of the complex pre-Hilbert space X(co)/Y(c0), which is natu- 
rally a complex Hilbert space, is denoted by ~(co).  Let ~ be the totality of 
functions f defined on fl  such that f ( co)e~(og)  for any coef~ and there 
exists x c ~  withf(co)=rco,(x) almost everywhere on f~. Then it is easy to 
see that ({Jf(co)}~,~a, ~ )  satisfies conditions I-III  in the definition of a 
Borel field of complex Hilbert spaces over fL Since J/f is separable in 
V (B), there exists an orthonormal basic sequence {x~}~r~ of ~ in V (B), which, 
by Theorem 2.4, corresponds externally to the sequence {x~}~N. For each 
i~N, let f,- be the function defined on ~ such that f ( c o ) =  zr,o(x;-) for any 
co~f~. For each o9~fl, let Jr'(co) be the closed linear subspace of J(f(co) 
generated by {f,-(a0}~N. Then it is easy to see that the sequence 
{f,-(co)}t~N is an orthonormal basic sequence of ~f~(co). Let 6 =  
{ f ~ l f ( c o ) e J f ( c 0 )  for a n y  c0~f~}. Then it is easy to see that 
({~(co)}o,~,  ~ )  satisfies conditions I-III  and V in the definition of a Borel 
field of complex Hilbert spaces over f~. As for the remaining condition IV, 
we have the following result. 

Lemma 4.5. ({~(co)},o~,, ~ )  satisfies condition IV in the definition of 
a Borel field of complex Hilbert spaces over ~ .  

Proof. Let g be a function defined on ~ such that g(o~)~u for any 
~o~f~ and the function o e f ~  ~ (g(o~),f,.(og)>, denoted by h;, is Borel for 
any i~N. Since 

IIg(c~ ~-- Z I<g(c~176 2 
i~N 

for any ~ f ~ ,  the function co~f~--~ Ilg(co)l[, denoted by h, is Borel. By 
Theorem 2.4, the sequence {~l~(hi)}i~N corresponds internally to a sequence 
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{r,-}~s of  complex numbers in V (B). Then, by Theorem 3.4, 
U/(h)2 = ~ s  H 2 in V (B). Therefore the sequence ~'.i~s rex~ converges strongly 
to an element y of  ~ in V (B). Since (y, x~)=r~ for any i6l~l in V (m, 
Qr ,o (y ) , f ( ro ) )=  (g(co),fi(m)) for any ieN almost everywhere on ~.  By 
Lemma 4.6 to be established below, Jr~,(y)e ~ (co )  almost everywhere on fL 
Since {f(co)}/~N is an orthonormal basic sequence of Jg(o)) for any co ef~, 
we have lro,(y) =g(ro) almost everywhere on f~, which implies g e ~ .  �9 

Lemma 4.6. For any x e ~ ,  rc,o(x)Eo~(co) almost everywhere on fL 

Proof Since {x;}~r~ is an orthonormal basic sequence of oef in V (B), we 
have x = ~ r  ~ (x, x~)x~ in V (B), which means, by Theorem 3.4, that 
rco,(x) = ~ N  Qro,(x), fe(c0))f(ro) almost everywhere on f~. �9 

Given x e ~ ,  this lemma enables us to choose f e ~  such that f ( co )=  
rc,o(x) almost everywhere on ~.  The function f is denoted by qg(x). 

Let {xl}i~s be another orthonormal basic sequence of  ~ in V (a). 
By replacing {x~};~s by {x~}~s in the above construction leading to 
({~(co)}~o~n, ~ ) ,  we obtain another Borel field ({~'(co)}o~n,  ~ ' )  of com- 
plex Hilbert spaces over fL Then Lemma 4.6 gives at once the following 
result. 

Lemma 4.7. ~et~ almost everywhere on f~, so that 
({J/g(co)}o,~n, ~ )  and ({~,ug'(co)}o,~n, ~ ' )  are equivalent. 

Proof By Lemma 4.6, f / (co)e~ ' (co)  almost everywhere on fl for any 
ieN. Therefore Jr(co) c ~ ' (co)  almost everywhere on f~. Similarly, we have 
)~"(co)cYf(co) almost everywhere on f~. Thence ~(co)=or almost 
everywhere on fL �9 

This justifies our notation ~(J(f  ) for ({~(co) )  o~ ~n, ~ ) ,  because t g ( ~  ) 
is determined uniquely up to equivalence, irrespective of  our choice of  an 
orthonormal basic sequence {xi}i~s of  J/g. 

Conversely, given a Borel field .~ = ({Jg(co))o,~n, ~ )  of  complex Hilbert 
spaces over f~, we would like to obtain a corresponding separable complex 
Hilbert space in V (B). First of  all, we define a definite set Jr in V (B) as 
follows: 

~ ( ~ )  = 1 

We define a binary relation R on ~ in V (B) as follows: 

R = {((x, y)V, e(x, y))Ix,  y e ~} 



Boolean-Valued Analysis and Reduction Theory 453 

where 

eCx, y) = V({CO e n  I x(co) =y(co)} ) 

It is easy to see that the binary relation R is an equivalence relation on ~ 
in V (m. Therefore we can consider the quotient set of ~ 1  with respect to 
the equivalence relation R in V (~), which is denoted by ~ .  For  any x e ~  
the equivalence class of  ~ with respect to R in V (m is denoted by 2 or by 
W(x). We can make the set ~,~ a complex vector space in V (m as follows: 

(a) ~7+jT=(x+y)~for  any x , y ~ .  
(b) q~ ( f )Y=  ( fx)  ~ for any x e  ~ and any complex-valued Borel func- 

tion f on f~. 

Furthermore, the complex vector space Jg in V (m can be regarded as a 
complex pre-Hilbert space in V (m as follows: 

(~7, jT)=W(g) for any x, y E ~  

where g is the complex-valued Borel function co ef~ ~ (x(co), y(co)). 
We can say more on ~ .  

Lemma 4.8. ~ is a separable complex Hilbert space in V (m. 

Proof Let {f~}i~N be a Borel field of orthonormal bases of  .~. Let 
{xi}i~s be a sequence of  vectors of W in V (m with xT=f~ ( ieN) .  Then 
(f~(co), ~ ( c o ) ) = 0  for any i ~ j  in N and any co~f~, while { f ( c o ) , f ( c o ) )  is 
0 or 1 for any i~N and any co~fL This implies that in V (m, (xi,  x j ) = 0  for 
any iCj  in lq, while (xi, xl) is 0 or ]" for any i~lq. Since {f(co)}i~N is total 
in ~ ( c o )  for any coE~, { f ( c o ) , f ( c o ) ) = 0  for any i~N impliesf(co) = 0  for 
a n y f ~  and any co~f~. Therefore {xi}i~s is total in W in V (m. Now that 
the separability of ~ in V (R~ has just been established, it remains to see the 
completeness of  Jt ~ in V (m, for which it suffices to show that in V <m, for 
any bounded linear functional q~ on W, there exists y e w  such that ~0(x)= 
(x,  y )  for any x e W ,  since in this case the completeness of  the Banach dual 
space W* of W gives at once the completeness of  ~ in V (m. Let q~ be a 
bounded linear functional on W in V (m, so that there exists r~R (m with 
Iq~(x)l<rllxl[ for any x e W  in V <m. Let So . . . . .  s, be a finite sequence of 
rational complex numbers. Recall that a complex number is called rational 
if it is of  the form u + iv with rational numbers u, v. Let g; be the complex- 
valued Borel function on ~ such that g ; (~)=s ;  i f f ( co )  is a nonzero vector 
while gi(co)=0 otherwise (O<i<n). Let {t~}6_<i_<~ be a finite sequence of  
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complex numbers in V (~) with t7 = W(g~) (0 < i_< n). Then it is easy to see that 

and t h a t  

almost everywhere. Therefore, for almost all co~O, if ~b0(r)(og) is defined, 
then 

is defined and 

If  the sequence So, �9 �9 � 9  s ,  ranges over all finite sequences of rational complex 
numbers, then ~o_<;_<,, g;(og)f (co) ranges over a dense subspace of J/f(co) for 
all a~efL Thus, for almost all co~O, we have a bounded linear functional 
~0~, on Yg(co) such that 

Let g be the function defined on ~ such that if q~o is defined, then 
g(~0)ex/g(co) with ~ o ~ o ( x ) = ( x , g ( o ) ) )  for any xe~r while if q~o~ is not 
defined, then g(co) is the zero vector of  o~(co). Since 

(yT(co), g(~o)) = q , o , ( f  (o~) )  = a ,o(~O(x~))(co)  

almost everywhere on ~q, the function coati ~ ( f ( c o ) ,  g ( c o ) )  is Borel for 
any i~N. Thence, by Proposition 4.2, we have g ~ .  It is easy to see that 
(xz, y ) =  q~(xO in V ~B) for any i~N, which implies that ~ is no other than 
the desired element. �9 

We denote ~ constructed in the above by W(~3). 
The following theorem, which follows directly from the definitions, 

shows that @ gives a bijective correspondence between separable complex 
Hilbert spaces in V ~B) and Borel fields of complex Hilbert spaces over f~ 
with its inverse tp. 
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Theorem 4.9. For any separable complex Hilbert space ~ in V (~), the 
complex Hilbert space T ( r  is isomorphic to ~vf in V (B). For any Borel 
field ~ of complex Hilbert spaces over ~2, the Borel field r )) of complex 
Hilbert spaces over ~ is equivalent to ~. 

Proof To deal with the former statement, let {xi}~r~ be an orthonormal 
basic sequence of ovf in V (m and let {f}~N be its corresponding Borel field 
of orthonormal bases of ~ ( ~ f )  with f(co)=zo,(x~) for any ieN and 
any coe~. 

Then it is easy to see that the sequence {yi}~n in V (B) with y~ =j~ for 
any ieN is an orthonormal basic sequence of ~(r )) in V (B~ and that 
there exists a unique unitary transformation U from ~ onto ~ ( r  in 
V (~) such that U(x~)=y~ for any ielN in V (B). Now, to deal with the latter 
statement, let {f}~N be a Borel field of orthonormal bases of .~ and 
{x~}~z~ its corresponding orthonormal basic sequence of ~ ( ~ )  in V (B) with 
x~=f for any ieN. Let {g~}i~N be the sequence of Borel vector fields of 
(P(~(.~)) with g;(co)= z~o(xz) for any eoe~ and any ieN. Then it is easy to 
see that ( f (co) , f~(co))= (g~(e0), g~(c0)) almost everywhere for any i, jeN. 
Therefore, for almost all co e~ ,  there exists a unitary transformation ~0o~ of 
ovf(co) onto 9if(co), the totality of which establishes the equivalence of S5 
and r  where 

and 

r ~:) �9 

We close this subsection with the following theorem, which has a close 
relationship with Proposition 4.3. 

Theorem 4.10. Let ~ be a separable complex Hilbert space in V (B) with 

dim(~Vg)= • hb, 
0_<n_<N0 

Let ~(~r ) = ({ ~f  (co) } o, ~ ,  ~ ), B. = ~o(b.), and ~ .  = {the restriction of x to 
B.[xe ~}. Then ({~((o)}~o~,,, ~ . )  is a Borel field of complex Hilbert spaces 
over B., which is equivalent to the constant field of dimension n. 

Proof. Let {x;}i~r~ be an orthonormal basic sequence of ~ in V (B) and 
{f~}i~N its corresponding sequence of Borel vector fields of (I)(~ff.) with 

f(co)--zo,(xT) for any ieN and any coE~. Then it is easy to see that the 
number of nonzero terms in {f'(cO)}i~N is equal to n for almost all (o~B. 
and that the nonzero terms in {f~(o)}i~N gives an orthonormal basis of 
~f((o) for almost all coEB., from which the desired conclusion follows 
readil 7. �9 
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4.2. Bounded Operators 

Let .~=({~(co)}o)~n, ~ )  be a Borel field of complex Hilbert spaces 
over f~. A family { T(co)}~o~n of bounded operators T(co) on ~ (co )  is called 
afield of bounded operators on .~. It is called Borel if it satisfies the following 
condition: 

( # )  For  any Borel vector field x, the vector field 

coea ~ T(co)x(co) 

is Borel. 

For  any field ~ =  { T(co)}o~a of bounded operators on ~ and x e  ~,  the 
vector field {T(co)x(co)}o,~n is denoted by 2;x. 

Proposition 4.11. For any Borel field { T(co)}~o~n of bounded operators 
on .~, the function c0s~  ~ IlT(c0)ll is Borel. 

Proof Let N be the totality of  sequences {s~}i~N of rational complex 
numbers in which the si are all zero except for a finite number of them and 

Y~i~N Isit 2-< 1. 
It is easy to see that g is a countable set. Let {X;}~N be a Borel field of  

orthonormal bases. Then we can see readily that 

for any c0e~. Since the function c0~f~ ~ tl T(co)(~g~N s;x;)ll is Borel for any 
{Si}i~NeS, we are now sure that the function coe~ l IT (co ) [ I  is also 
Borel. �9 

We notice that our notion of a Borel field of bounded operators is no 
other than Dixmier's (1981, Part II, Chapter 2) notion of  a measurable field 
of  continuous linear mappings adapted appropriately to our present context. 
Thus all elementary properties of  his notion carry over to our present context 
with obvious modifications. In particular, we now record a proposition 
of Dixmier (1981, Part II, Chapter 2, Proposition 1) with some minor 
modifications. 

Proposition 4.12. Let {X~}~N be a fundamental sequence of Borel vector 
fields of 9. For  a field {T(co)}~o~n of bounded operators on .~ to be Borel, 
it is necessary and sufficient that the functions co ef~ ~ (T(co)xe(co), Xi(co)) 
are Borel (i, j e N ) .  

Two Borel fields {T(co)}~o~n, { W(co)}~o~n of bounded operators on .~ 
are called equivalent if 7"(o))= W(co) for almost all co Eft. 
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In the preceding subsection we have established a correspondence 
between the separable complex Hilbert spaces in V (B~ and the Borel fields of 
complex Hilbert spaces over s The principal objective of this subsection is 
to establish, under this correspondence, an essentially bijective correspond- 
ence between the bounded operators in V (u) and the Borel fields of bounded 
operators. First of all, given a separable complex Hilbert space ~ in V CB~ 
and a bounded operator T on Yf, we are going to construct a Borel field 
i f (T)  of bounded operators on the Boret field if(Yf) of  complex Hilbert 
spaces over if2. We use the same notation as that used in the preceding 
subsection for the construction of i f ( Y )  from fig. It is easy to see that 
for any c o ~ ,  if if0(l[Tl{)(co) is defined and x~X(co), then Tx~X(co) 
and ifo( [[ Tx [[ )(co) _< if0( It TIT )(co)if o( I]xt[ )(co), since II Tx]l _< I[ T[] ][x 1[ in V (B). 
Therefore, for any co~E~ such that ifo([]Tll)(co) is defined, the function 
x~X(co) ~ Tx naturally induces a bounded operator ~P(co) on ~(co).  Let 
[~ be the totality of all sequences {ri)i~N of rational complex numbers re in 
which the ri are all zero except for a finite number of i~N. It is easy to see 
that [~ is a countable set and the set { ~ N  r~f(co)[ {ri}i~Ne~} is a dense 
linear subspace of Yf(co) for any coEf~. For {r~}i~ye~, we let {s~)i~ be a 
sequence of  complex numbers in V (m such that s7 = f~ for any ieN. Then, by 
Lemma 4.6, rco,(T(~i~s s~x~))eJf.(co) for almost all co eEL Therefore we are 
certain that for almost all coef2, ~;(g. (co) is invariant under ~P(co). In such a 
case the restriction of T(co) to fir(co) is denoted by T(co). By taking T(co) 
to be the zero operator for coefl in which fir(co) is not invariant under 
T(co), we obtain a field {T(co)}o~9 of bounded operators on ~, which we 
denote by if(T).  

Lemma 4.13. {T(co)}o,~a is a Borel field of bounded operators on .9. 

Proof It is easy to see that 

< r(co)f, (co), f~ (co)> = if(< rx~, xj) )(co) 

for almost all co~f2, which implies the desired conclusion by Proposition 
4.12. �9 

We note that i f (T)  is determined uniquely up to equivalence, irrespec- 
tive of our choice of an orthonormal basic sequence {xe}e~r~ of fig in V (B) in 
the construction of if(fig. ). 

Conversely, given a Borel field ~ = ({~f~(co)}~or ~ ) of complex Hilbert 
spaces over fl  and a Borel field ~ = { T(co)}o~n of bounded operators on -9, 
we are going to construct a bounded operator qJ(3;) on qo(-9) in V (B). We 
use the same notation as that in the construction of q~(-9) given in the 
previous subsection. By Theorem 2.4 we can see easily that the function 
�9 (x) ~ q~(~x) ( x ~ )  naturally induces an operator T on ~ in V (~. By 
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Proposition 4.1 1 the function e col1 ~-~ l] T(co)II is a Borel function, which we 
denote b y f  Then it is easy to see that II~(~;x)lt _<~(f) l l~(x)l l  in V (m for 
any x e ~ ,  which implies that T is a bounded operator on ~ in V (m. We 
denote T by ~(3;).  

Now the following theorem follows readily from the definitions. 

Theorem 4.14. For any bounded operator T on a separable complex 
Hilbert space ~F. in V (m, we have T= ~(@(T)),  provided we identify ~ and 
�9 (~(~ff)) by Theorem 4.9. Conversely, for any Borel field X of bounded 
operators on a Borel field 55 of complex Hilbert spaces over ~'/, q)(~(2:)) 
and r are equivalent, provided we identify q)(~(55)) and .9 by Theorem 4.9. 

We can naturally define such fundamental operations as addition, multi- 
plication by a complex-valued Borel function, multiplication, and adjoint on 
Borel fields of bounded operators. Let 55 = ({24~(co)}o,~n, ~ )  be a Borel field 
of complex Hilbert spaces over f~. Let X=  {T(co)}~o~n and ~I= { U(co)}o~a 
be Borel fields of bounded operators on 55. L e t f b e  a complex-valued Borel 
function on fL We define: 

1. ~ + ~ =  {V(co)+ U(~o))~ 
2. f ~ =  {f(co)T(a))}~n. 

4. ~ *  = { V ( c o ) * } ~ .  

Then it is easy to see the following result. 

Proposition 4.15. Let T and U be bounded operators on a separable 
complex Hilbert space ~ in V (m. Let rEC ~B). Then: 

(a) qb(T+ U) and ~(T)+qb(U)  are equivalent. 
(b) Cb(rT) and Cb(r)(I)(T) are equivalent. 
(c) q~(TU) and ~(T)cb(U) are equivalent. 
(d) (I)(T*) and cI)(T)* are equivalent. 

To conclude this subsection, we deal with the strong convergence of 
bounded operators. Let ~f' be a separable complex Hilbert space in V (m. 
Let { T~}~s be a sequence of bounded operators on ~f' in V (m, which corre- 
sponds, by Theorems 2.4 and 4.14, to a sequence {~;~}e~N of Borel fields of 
bounded operators on q~(~) ,  where ~;i = {Ti(co)}o~n. Then we have the 
following result. 

Theorem 4.16. The sequence { Ti}i~s converges strongly to a bounded 
operator T in V (m iff (a) supi~NIIT,(w)II<+oO for almost all o)ef~, and 
(b) the sequence { Ti (co)} ;~N converges strongly to T(co) for almost all co e~ ,  
where @(T) = { T(co)}o,~n. 
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Proof We recall (in ZFC) that for a sequence {T~}~N of bounded 
operators on a complex Hilbert space to converge strongly to a bounded 
operator S, it is necessary and sufficient that sup~NIIS~ll<+oe and 
Sx = lim~_~o Six for any x of a total subset of the complex Hilbert space, for 
which the reader is referred, e.g., to Dunford and Schwartz (1958/1963/ 
1971, II.3.6, pp. 60-61). By Proposition 4.11 it is easy to see that 
supI~NII Till < + ~ in V (B) iff sup;~NII Ti (co)1} < + ~ for almost all co 6D. Using 
the same notation as in the construction of dp(~)  given in the previous 
subsection, we notice, by Theorem 3.4, that T x ; = l i m ~  T~xj for any j~lq 
in V ~B) iff T(co)~(co)= l i m ~  T~(co)f(co) for a l l j6N almost everywhere on 
f~. Since {x,}~r~ is total in o~, in V ~B) and {fj(CO)};~N is total in ~(co)  for 
any coef~, the desired conclusion follows. �9 

To conclude this subsection, we comment that this subsection can be 
generalized to bounded linear transformations (between different complex 
Hilbert spaces) without difficulty. 

4.3. Von Neumann Algebras 

Let ~=({Yf(co)}~o~, ~ )  be a Borel field of complex Hilbert spaces 
over fL A family {d(co)}~o~ ofvon  Neumann algebras d(co)  on ~r is 
called a Borel field of yon Neumann algebras on ~ if there exists a sequence, 
called a generating sequence of {d(co)}o,~,  { To(co)}~o~a, { T~(co)}~o~, �9 �9 
of Borel fields of bounded operators on ~ such that for almost all co~fL 
d(co)  is generated by the sequence To(co), T~(co) . . . . .  Two Borel fields 
{d (co )}o~ ,  {~'(co)}~,~a of yon Neumann algebras on .~ are called equiva- 
lent if d(co)  = J/(co) for almost all co ~ .  

Let d be a yon Neumann algebra acting on a separable complex Hilbert 
space ~ in V (B~. Since Yf is separable in V ~), the yon Neumann algebra 
~r is generated by a sequence { T,.}~r~ of bounded operators in d ,  for which 
the reader is referred, e.g., to Bourbaki (1953/1955, Chapter III,w 3, Proposi- 
tion 6). By Theorems 2.4 and 4.14 the sequence { T~}~ in V <B) corresponds 
externally to a sequence {{T~(co)}o,~}~N of Borel fields of bounded opera- 
tors on ~P(~cf). Let ~r be the von Neumann algebra generated by the 
sequence {T;(co)};~N for each co~fL It is easy to see that the family 
{~r  to be denoted by ~(~r is a Borel field of yon Neumann 
algebras on ~ ( ~ ) ,  but we need to verify the following result: 

Lemma 4.17. qb(d) is determined uniquely up to equivalence, irrespec- 
tive of our choice of the sequence {T~}~ in V ~B~ in the above construction. 

Proof Let {T~}~r~ be another sequence of bounded operators on ~ in 
V <B) such that it generates ~r in V <B). Let {{T~(co)}o~},~N be the external 
counterpart of { T;}~r~ and let ~(co) be the yon Neumann algebra generated 
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by the sequence {T,-(co)};~N for any coE•. By replacing {Ti};~s by 
{T#(llrill + ~)}~ (e>0) if necessary, we can assume without loss of gen- 
erality that {T~}i~sc ( d ) l ,  where ( d ) l  is the unit ball of d endowed with 
the strong topology. Since (~r is metrizable and separable in V (m (cf. 
Bourbaki, 1953/1955, Chapter III ,w 3, Proposition 6), Kaplansky's density 
theorem (cf. Kadison and Ringrose, 1983/1986, Theorem 5.3.5) enables us 
to approximate each T~ by a sequence in the self-adjoint algebra generated 
by {T;}~_s in V (m. Therefore, by using Theorem 4.16, we can see that 
sr ~sr for almost all coef~. By exchanging the roles of {T~};~s and 
{T~};~s in the above discussion, we can see also that ~(co)c~r  for 
almost all coef~. Therefore ~r  for almost all c0e~. �9 

Conversely, suppose that we are given a Borel field 2I = {d(cO)}o,~a of 
yon Neumann algebras on a Borel field .~ = {Jf(co)}~o~a of complex Hilbert 
spaces over n.  Let {{T~(c0)}~o~a}~N be a generating sequence o f  9.I. By 
Theorems 2.4 and 4.14, the generating sequence {{T~(c0)}o~r~}~N 
corresponds internally to a sequence {T,.}~s in V (m, which generates a 
yon Neumann algebra, to be denoted by ~(gA), acting on T ( ~ )  in V (m. 
The following lemma can be verified in a similar way to Lemma 4.17. 

Lemma 4.18. T(9.I) is determined uniquely, irrespective of our choice 
of  {{ T~ (co)}co ~n}~N in the above discussion. 

Now the following theorem follows from the definitions. 

Theorem 4.19. For each von Neumann algebra z~' on a separable com- 
plex Hilbert space ~ in V (m, we have ~ ( q ~ ( d ) ) =  ~r provided we identify 
�9 (q~(Jf)) and ~ under Theorem 4.9. Conversely, for each Borel field N of 
von Neumann algebras on a Borel field .~ of complex Hilbert spaces over 
~,  we have q~(~(9.I))= 9.I up to equivalence, provided we identify q)(~(SS)) 
and .~ by Theorem 4.9. 

4.4. Subspaces 

Let 19 = ({~(co)}~o~n, ~ ) be a Borel field of complex Hilbert spces over 
f2. A family {~,~f'(co3}~o~a of  closed linear subspaces 2r it'(co) is called 
a Borelfield ofsubspaees of  ~ if there exists a sequence {Xi}i~N of Borel 
vector fields such that J~f(co) is the closed linear span of the sequence 
{X;(CO)};~N. A Borel field {:r of subspaces of .~ can naturally be 
made a Borel field 91 = ({:g(co)}o~n, ~ )  of  complex Hilbert spaces over f2 
by taking the totality ~ of Borel fields to the totality of  Borel fields x of  
.~ such that x(co)~ ~"(co) for any co cf~. We call 91 the Borel field of complex 
Hilbert spaces over D associated with the Borel field {~f(co)}~o~n of sub- 
spaces of I~. In the rest of this paper we usually do not distinguish between 
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a Borel field {Y(co)}~co of subspaces of :5 and its associated Borel field 
({J{(co)}~o~n, ~ )  of complex Hilbert spaces over f~. 

Since our notion of a Borel field of subspaces is not other than Dixmier's 
(1981, Part II, Chapter 1, Section 7) notion of a measurable field of subspaces 
adapted simply to our present context, the elementary properties of his 
notion carry over to our present context with trivial modifications. In par- 
ticular, we have the following result. 

Proposition 4.20. Let :5= ({Jt~(co)}~oc~a, ~ )  be a Borel field of complex 
Hilbert spaces over ~ ,  z((co) be a closed linear subspace of ~(co)  for any 
coef~, and E(c0) be the projection corresponding to •(co) for any c0~fL 
Then for the family {X(c0)}o~o to be a Borel field of subspaces of :5, it is 
necessary and sufficient that the family {E(co)}~o~o is a Borel field of bounded 
operators on :5. 

Proof See Dixmier (1981, p. 173). �9 

Two Borel fields {Y(co)}o~n and {~e(co)}~o~ of subspaces of :5 are 
called equivalent if 3f(co)= Y'(c0) for almost all co eft .  

Let ~X~ be a separable complex Hilbert space in V (m and X be a closed 
linear subspace of  ~ in V ~m. Then 3{- is a separable complex Hilbert space 
in V (m. Then we can naturally regard q)(3l) as a Borel field of subspaces 
of (D ( .~) .  

Conversely, given a Borel field :5 of complex Hilbert spaces over ~ and 
a Borel field f~ of subspaces of :5, ~P(91) can naturally be regarded as a 
closed linear subspace of ~P(:5). 

Theorem 4.9 gives at once the following result. 

Theorem 4.21. (a) For any closed linear subspace X of a separable 
complex Hilbert space ~ in V ~m, we have ~P(qb(3l )) = 3f  in V (B), provided 
we identify ~P(q~(J4~)) and ~f  by Theorem 4.9. 

(b) For any Borel field 9t of subspaces of a Borel field :5 of complex 
Hilbert spaces over g), qs(',P(91)) and 9t are equivalent provided we identify 
q)(~P(5)) and :5 by Theorem 4.9. 

A Borel field {T(cO)}o~cn of bounded operators is called a Borelfield of 
projections if T(c0) is a projection for any coe~. If E is a projection on a 
separable complex Hilbert space oct ~ in V (m, then we can assume by Proposi- 
tion 4.15 that ~ (E)  is a Borel field of projections, which we will do in the 
rest of this paper. Now we deal with the relationship between Borel fields of 
subspaces and Borel fields of projections. 

Theorem 4.22. Let ~ ,  be a separable complex Hilbert space in V ~m. Let 
3{" be a closed linear subspace of J/g with corresponding projection E in 
V (m. Let (I)(cg)= {2f(o))}~o~n and q~(E)= {E(co)}o~n. Then E(~o) is the 
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projection corresponding to ~(co) for almost all co el'~. In particular, qb(E) 
can always be considered a Borel field of projections of ~ ( ~ ) .  

Proof We use the same notation as in the construction of qb(~) in 
Section 4. I. We take {xi}i~s in such a manner that {x2i};+r~ is an orthonormal 
basic sequence of X in V (m. Then we have in V <B) that Exzi = X2i for any 
i~1~, while Ex2i+~=0 for any i~l~. Therefore, for almost all co~f~, 
E(co)fze(co) = J~+(co) for any ieN, while E(co)f2++ 1(co)=0, which implies the 
desired statement at once. �9 

Next we would like to deal with orthogonal complements. A similar 
method to that in the proof of the preceding theorem gives the following 
result. 

Theorem 4.23. For any closed linear subspace oU of a separable 
complex Hilbert space ~ in V (m, we have that O ( y i )  is equivalent to 
{J~ff(co)• where *(Yd)= {~(co))~o~n. 

As for the range projection R(T) of a bounded operator T [R(T) is the 
projection corresponding the minimal closed subspace containing the range 
of T], we have the following correspondence theorem. 

Theorem 4.24. Let T be a bounded operator acting on a separable 
complex Hilbert space ./f in V (m. Then ~(R(T)) is equivalent to 
{R(T(co))}o~n, where *(T)  = {T(co)}o~n. 

Proof Let {x+}~s be an orthonormal basic sequence of Yg in V (m with 
{f-}~N being its corresponding Borel field of orthonormal bases of q~(W). 
Let W be the closure of the range of Tin V <m. Let {Y+}++s be the orthonormal 
basic sequence of 5f obtained from { Txi}~s by the Gram-Schmidt ortho- 
gonalization process. More specifically, the sequence {Y~}~s is obtained 
inductively as follows: 

(a) If Tx~ belongs to the linear subspace generated by the preceding yj, 
then let yi be the zero vector. 

(b) Otherwise, let y~ be the normalization of the vector obtained from 
Txi by subtracting the orthogonal projection of Tx+ onto the linear 
subspace generated by the preceding y/. 

Let {g+}+~N be the Borel field of orthonormal bases of q~(z,f) corresponding 
to  {yi}ieS.  Let q)(Sf) = {W(co)}~o~n. We can see easily that for almost all 
coe~, the Gram-Schmidt orthogonalization applied to the sequence 
{T(co)f(co)}~+N gives the sequence {g~(co)}o~n. Therefore, for almost all 
co ef~, X(co) is the closure of the range of T(co), which implies the desired 
result by Theorem 4.22. �9 
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This theorem gives the following correspondence theorem for the null 
projection N(T) of a bounded operator T [N(T) is the projection corre- 
sponding to the closed linear subspace annihilated by T]. 

Corollary 4.25. Let T be a bounded operator acting on a separable 
complex Hilbert space Ye in V(B)I Then q~(N(T)) is equivalent to 
{U(T(co))},,~n, where q)(T)= {T(co)},o~n. 

Proof By Proposition 4.15 and Theorem 4.24, ~(R(T*)) is equivalent 
to { R(T(co)*)},o~n. Let 2 '  be the closed linear subspace of ~ corresponding 
to the projection R(T*) in V (B). Let q~(2')= {5~ The projection 
N(T) corresponds to L,e • in V <B). By Theorem 4.22, ~(co) corresponds to 
R(T(co)*) for almost all co ef~, which implies that N(T(co)) corresponds to 
~(co) • for almost all coefh Therefore ~(N(T)) and {N(T(co))},o~n are 
equivalent by Theorems 4.22 and 4.23. �9 

Now we would like to deal with induction and reduction of von 
Neumann algebras. 

Lemma 4.26. Let T be a bounded operator belonging to a yon Neum- 
ann algebra d acting on a separable complex Hilbert space ~ or to its 
commutant sJ '  in V (B). Let q~(T) = {T(co)},o,n, ~(~r  {sC'(cO)}o,~n. Then 
T(co) belongs to st(~o) or to ~r for almost all o)ef~ according as T 
belongs to s t  or to sd' in V (B~. 

Proof As in Lemma 4.17, we can assume without loss of generality 
that I[ T[] < ]" in V (B). We use the same notation as in the construction of 
q~(W) in Section 4.3. Without loss of generality, we can take the sequence 
{Ti}i~ generating d in V (B> to be closed under multiplication and the 
adjoint operation. We can see that if Tbelongs to d in V (B), then a sequence 
of finite linear combinations of {Ti};~s converges strongly to T in V (B), 
which implies, by Theorem 4.16, that a sequence of finite linear combinations 
of {Ti(co)}i~N converges strongly to T(co) for almost all r so that 
T(co) esd(co) for almost all co ~f~. Now we deal with the case that T belongs 
to ~r in V (B). Let {S i}~  be a sequence of bounded operators in V (B) which 
generates d '  and which is closed under multiplication and the adjoint opera- 
tion in V ~"). Let {{S;(co)}o,~n};~N be the sequence of Borel fields of bounded 
operators corresponding to {S~}i~r~. Then it is easy to see, by Proposition 
4.15, that S~(co)T;(co)--Tj(co)S~(co) for all i,j~N ahnost everywhere on fh 
Therefore the von Neumann algebra if(to) generated by the sequence 
{Si(cO)}~N is contained in d(co)' .  As in the case that T belongs to ~r in 
V (B), we can show that T(co) belongs to ff(~o) for almost all (o~f~. The 
desired conclusion follows. �9 
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Theorem 4.27. Let d be avon Neumann algebra acting on a separable 
complex Hilbert space • in V (m. Let E be a projection belonging to d or 
d '  in V (m. Then ~ ( d e )  and {d(co)E(o,)}o~n are equivalent, where 
�9 ( d )  = {W(co)}o,~n and q~(E) = {E(co)}o,~n. 

Proof We use the same notation as in the construction of q~(d) in 
Section 4.3. We can take {Ti}i~s to be closed under multiplication and the 
adjoint operation in V (m, which means, by Proposition 4.15, that the 
sequence { Ti (co)}i~r~ is closed under multiplication and the adjoint operation 
for almost all cosf2. By the second or the third statement of Proposition 1 
of Dixmier (1981, Part I, Chapter 2), .~e is generated by the sequence 
{(T,.)e}~s in V (m, where (T~)e is the restriction of the operator ET~ to the 
range of the projection E. Then, by Proposition 4.15 and Theorem 4.22, the 
sequence {(T,-)~};~s in V (m corresponds externally to 

Let qo(de) = {g(co)}~o~n, so that N(co) is generated by 

for almost all coef~. Since d(co) is generated by the sequence {TI(CO)}~N, 
Proposition 1 of Dixmier (1981, Part I, Chapter 2) shows that g(co) is 
d(co)e(~o) for almost all co eft. �9 

To conclude this subsection, we deal with the central support Ce of a 
projection E in avon  Neumann algebra W acting on a separable complex 
Hilbert space ~ in V (m. 

Theorem 4.28. @(Ce) is equivalent to {Ce~o,)}o,~n, where 

�9 (E) = 

Proof We use the same notation as in the construction of (I)(~r in 
Section 4.3. Let d/d and ~ be the closed linear subspaces o f ~  corresponding 
respectively to the projections E and CE with qb(jd)= {~d(co)}~o~n and 
~(~a) = {oW(co)}o~n. Let {Yi}i~s be an orthonormal basic sequence of 
in V (m corresponding externally to the Bore] field {gi}i~N of orthonormal 
bases. By Corollary ] of Proposition 7 of Dixmier (1981, Part I, Chapter I), 

is the smallest closed linear subspace of ~ containing { T~yj}(i,j)~s • ~. By 
a similar argument to that in Theorem 4.24, we can see that, for almost all 
co e~, &a(co) is the smallest closed linear subspace containing 

{ T, (co)g+ (co)} N 

which, by Corollary 1 of Proposition 7 of Dixmier (1981, Part I, Chapter 
1), corresponds to the projection Cu(o,) almost everywhere on ~. Then 
Theorem 4.22 gives the desired conclusion. �9 
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4.5. Direct Sums and Tensor Products 

Let .~,=({9f',(co)}co~n, ~,)  and .~2=({2r ~2) be Borel 
fields of complex Hilbert spaces over fL Then it is easy to see that 
({.J& (co)@ J4r. 2(co)},o~a, ~ )  is a Borel field of complex Hilbert spaces over 
~, where ~ consists of all vector fields co ~ Xl (co)@ x2(co) with xl e ~ and 
x2e~2. This Borel field of complex Hilbert spaces over ~ is denoted by 
-~J @ -~2 and called the direct sum of -~l and -~2. 

The following theorem follows directly from the definitions. 

Theorem 4.29. For any separable complex Hilbert spaces ~r o~2 in 
V (m, tg(Wt | ~f, 2) is equivalent to q)(W~) @ q)(~;4~2). 

Let .~, = ({~,(co)}~o~n, 61) and 52 = ({2r ~2) be Borel fields 
of complex Hilbert spaces over ~. Then Dixmier's (1981, Part II, Chapter 
1, p. 174) Proposition 10 specialized to our present context goes as follows: 

Theorem 4.30. There exists a unique Borel field of complex Hilbert 
spaces over ~ of the form SS=({Jg, ~(co)| 6 )  such that for 
any Borel vector fields x~ of 5t and x2 of SS:, the vector field 
co ef~ ~-+xl(co) | x2(co), denoted usually by xl | x2, is Borel. 

This Borel field of complex Hilbert spaces over f~ is denoted by .~j | 92 
and is called the tensor product of -~l and -~2. 

Theorem 4.31. For any separable complex Hilbert spaces W~, W2 in 
v(B), (I)(~t~l | ~2)  is equivalent to (I)(~1~1) | (ID(~, 2). 

Proof We denote by 7? a bijective function from N onto N x N, which 
shall be fixed throughout the rest of this paper. We also denote, for the sake 
of simplicity, by the same symbol 7/its internal counterpart in V (m, which 
is a bijective function from tq to Iq x lq in V (m, so that r/(h)= r/(ny in 
V (m for any nsN. We denote by r/l (q2, respectively) the function assigning 
to n EN the first (the second, respectively) component of r/(n). Their internal 
counterparts are denoted by the same symbols. Let {x~}~s and {yi}~s be 
orthonormal basic sequences of ~ j  and ~ 2 ,  respectively, with {f}~N and 
{g~} ~N being their corresponding Borel fields of orthonormal bases in ~ ( ~ 1 )  
and t9(~r respectively. Then it is easy to see that {x,,(o | is 
an orthonormal basic sequence of ~ | or in V (m, which is supposed to 
correspond externally to the Borel field {h,.};~N of orthonormal bases in 
q)(~, ~ | og#2). Since { f,n(o | is a Borel field of orthonormal bases 
in q ) (~ , )  | q)(~r and 

( f .,(i)( co ) | g.2(i)(co), f .,(J)( co ) | go2(J)( co ) ) = (hi (co), h/( co ) ) 

almost everywhere on f~ for any i , j~N, we obtain the desired conclusion by 
Proposition 4.4. �9 
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A similar argument gives the following result. 

Theorem 4.32. Let T, and T2 be bounded operators acting on separable 
complex Hilbert spaces ~ff.~ and ~f'. 2, respectively, in V (m. Then q~(T, | 7"2) 
is equivalent to qb(T1) | (T2)= { T, (co) | 7"2((o)} o,~n under the identification 
of q~(H~|162 and ~(J(~l)| by the above theorem, where 
q~(T1) = { T,(co)}~o~n and ~(T2)= { T2(co)}~o~n. 

Theorem 4.33. For any von Neumann algebras N , ,  ~r acting on separ- 
able complex Hilbert spaces W, ,  ~gg- 2, respectively, in V (m, ~(sr | sr is 
equivalent to q~(dj) | q)(d2) = {d,(co) | ~'2(co)}o,~n under the identifica- 
tion of ~ ( ~ )  | q~(24P2) and ~ ( W ,  | ~ 2 )  by Theorem 4.31. �9 

Proof This follows readily from Theorem 4.32 of this paper and 
Proposition 6 of Dixmier (1981, Part I, Chapter 2). �9 

Corollary 4.34. Let 9.I~ = {sc',(co)}o)~n be a Borel field ofvon Neumann 
algebras on a Borel field ~, = ({d4~ ~l)  of complex Hilbert spaces 
over ~ and ~I2 = {0~r be a Borel field of yon Neumann algebras on 
another Borel field .~2 = ({W2(co)}~o~n, ~ )  of complex Hilbert spaces over 
f~. Then 9~I l | ~[2:  {~I(co) | ~2(co)}(.0~ iS a Borel field of von Neumann 
algebras on .~ | 52. 

Proof. This follows at once from Theorems 4.19 and 4.33. �9 

4.6. Automorphisms 

Let ~I, = {d,(co)}o,~n and 9.12= {J2(co)}~o~n be Borel fields of von 
Neumann algebras on Borel fields 

and 

52 = ( { ~ 2 ( c o ) } ~ ,  ~2) 

of complex Hilbert spaces over ~,  respectively. A family {o-(co)}~o~n\z of 
isomorphisms er(co) of all(co) onto d2(co) with Z being a meager Borel set 
of f~ is called a Borelfield of isomorphisms ofg.ll onto 9.Iz if it satisfies the 
following conditions: 

I. For any Borel field {S(co)}o,~n of bounded operators on 5, with 
S(CO) e d l  (co) for any co ef t ,  there exists a Borel field { T(co)}o,~n of bounded 
operators on ~52 with T(co)ed2(co) for any coef2 such that 7"(o))= 
cr(co)(S(co)) for any coef2\Z. 

II. For any Borel field {T(co)}o,~n of bounded operators on -~2 with 
T(co) ~d2(co) for any co sf~, there exists a Borel field {S(co)}o,~n of bounded 
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operators on ~,  with S(co)ed,(co) for any coe~ such that T(co)= 
0.(co)(S(co)) for any o ) e~ \Z .  

Two Borel fields {o-,(co)}~,~n\z, and {o-2(co))o,~a\z2 of isomorphisms of 
91, onto 212 are called equivalent if o-,(c0)= o-2(co) for almost all c0E~. If 
there exists a Borel field of isomorphisms of 211 onto 212, then 21, and 212 
are called algebraically equivalent. If 21, and 212 happen to be the same, a 
Borel field of isomorphisms of 9-I, onto 212 is called a Borelfield ofautomor- 
phisms of  21, = 212. 

Let d~ and d 2  be von Neumann algebras acting on separable complex 
Hilbert spaces ovg., and ~ 2 ,  respectively, in V (m and 0. be an isomorphism 
of d ,  onto d 2  in V (B). We would like to show that o- naturally gives rise 
to a Borel field ~(o-) of automorphisms of q~(d). By the Corollary of 
Theorem 3 of Dixmier (1981, Part I, Chapter 4) there exists a von Neumann 
algebra ~ acting on a separable complex Hilbert space ovf, in V (m such that 
0. can be written as 0-4 o 0"3 o o-2-' o 0-,, where 0-, and 0-4 are spatial isomor- 
phisms, and 0.2: M --, Me and 0-3: M ~ Me are inductions with projections E 
and F in M' such that Ce = Ce= I (the identity operator) in V (m. 

Let q~(M)= {M(co)},o~n. The method of Section 4.2 used in the con- 
struction of @(T) applies to o-, and o-4 to yield Borel fields of isomorphisms 
t~ (a l )  = {o-l((l))}ro~n\Zi and (I)(0.4)= {o-4((0)}ol~n\z4. Let 

r  = 

and 

O(F) = {F(co)}~o~n 

By ~fheorem 4.28 we are certain that Ce(~,)=CF(,o)=I for almost all coefl, 
which enables use to define Borel fields of isomorphisms {0.2(o))}o~n\z2 and 
{o-3(co)}o~n,,z~ such that for all coefl \Zz,  o-2(co) is the induction of M(co) 
to M(co)E(~o), and for all coef~\Z3, 0.3(co) is the induction of M(o)) to 
M(co)v(o,). We take q~(0.) to be 

The above consideration has shown the following result. 

Proposition 4.35. If  yon Neumann algebras d ,  and d 2  acting on separ- 
able complex Hilbert spaces are algebraically equivalent in V (m, then ~ ( d , )  
and ~ ( d 2 )  are algebraically equivalent. 

Apparently our definition of @(o-) depends on our several extrinsic 
choices. Fortunately, we can see easily the following result. 
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Proposition 4.36. For any bounded operator T belonging to sO, 
in V (B), letting ~ ( T ) =  {T(co)}o,~n, q~(cr(T))= {S(co)}~o~n, and @(o-)= 
{o-(co)}~o~n\z, we have S(co) = o-(co)(T(co)) almost everywhere on fL 

This gives directly the following result. 

Corollary 4.37. qb(cr) is determined uniquely up to equivalence, irre- 
spective of our several extrinsic choices in the construction of ~(cr). 

Proof Let { T~};~s~ be a sequence in the unit ball (dl)1 which generates 
W,. Let {{T~(o~)}~o~n}i~N be its corresponding sequence of Borel fields of 
bounded operators. Let q)(d0={d~(c0)}o,~n. For almost all coef~ the 
sequence { T~(W)}i~N belongs to (d1(o9))1 and generates all(co). By Theorem 
3 of Dixmier (1981, Part I, Chapter 4), or(co) is weakly continuous on 
(dl(co))j for any coef~\Z. Then Proposition 4.36 gives the desired 
conclusion. �9 

Conversely, each Borel field Z of automorphisms of a Borel field 9.1 of 
von Neumann algebras gives naturally an automorphism W(Z) of W(9.I) in 
V (m. We have the following result. 

Theorem 4.38. For an isomorphism o- between von Neumann algebras 
acting on separable complex Hilbert spaces in V (m, we have W(qg(o-))= o- 
under the identification of Theorem 4.19. Conversely, for any Borel field Y, 
of isomorphisms between Borel fields of von Neumann algebras, ~(W(Z)) 
and Y~ are equivalent under the identification of Theorem 4.19. 

5. HILBERT ALGEBRAS 

Let ~=({)f?(co)}~o~n, ~ )  be a Borel field of complex Hilbert spaces 
over f~. A family {d(co)}~o~n of full Hilbert algebras d(co) whose Hilbert 
space completions are o~f(co) is called a BorelfieM of Hilbert algebras on 
and ~ is called its associated Borel field of complex Hilbert spaces over f~ if 
it satisfies the following conditions: 

I. For any Borel vector field x with x(co) in d(co) for all coef~, the 
vector field x*: coef~ ~ x(co)* is Borel. 

II. For any Borel vector fields x and y with x(co) and y(co) in d(o~) 
for all co eft,  the vector field xy: coef~ ~ x(co)y(co) is Borel. 

III. There exists a fundamental sequence {xi}i~N of Borel vector fields 
such that xi(co)eW(co) for any i~N and any coegL 

Our notion ofa  Borel field of Hilbert algebras is no other than Dixmier's 
(1981, Part II, Chapter 4) notion of a measurable field of Hilbert algebras 
adapted simply to our present context, except that we have required all 
d(co) to be full. 
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Two Borel fields {d,(co)}o~n and {d2(co)}o~n of Hilbert algebras 
respectively on Borel fields ({~r ~ )  and ({Y'f~(co)}~o~a, ~2) of 
complex Hilbert spaces over f~ are called equivalent if there exists a meager 
Borel subset Z off~ and a (Hilbert space) isomorphism rpo, : xr ~ W~(co) 
for each co e f~ \Z  such that: 

I. For every x e ~  there exists y e ~ 2  satisfying y(co)= ~po~(x(co)) for 
every co ~f~\Z. 

II. For  every Ye~2 there exists x e ~ l  satisfying y(co)= ~p~o(x(co)) for 
every co ef~\Z.  

III. For each co e f~\Zk,  q~o, if restricted to d , (co) ,  induces a bijective 
correspondence between d j (co)  and d2(co) preserving the product and �9 
operation. 

Let d be a Hilbert algebra in V (n) whose completion W in V (m is 
assumed to be a separable complex Hilbert space in V (B). Now we would 
like to show that d yields naturally a Borel field q~(d) of Hilbert algebras 
whose associated Borel field of complex Hilbert spaces over fl is equivalent 
to @(W,)= ({~(co)}~o~n, ~ ) .  Since Js  is separable in V ~m by assumption, 
there is a sequence {yi};~s in V (m such that it is total in W and is closed 
under product and involution �9 in V (m. By applying the Gram-Schmidt 
orthogonalization process to {y~}i~s in V (m, we obtain an orthonormal basic 
sequence {x~}t~s in V (m, so that, for any i, j e N ,  xix i can be written as a 
finite linear combination ~k~s r~ xk, in V (m, where for each ielN and each 
j e N ,  r~ are all zero except for a finite number of k's in V (m, and for any 
iegl, x* can be written as a fnite linear combination }]j~s s~x;, where, for 
each ieN, the s~ are all zero except for a finite number o f j ' s  in V (B). The 
sequence {x~}~s in V (m gives rise externally to a Borel field {f,}~N of 
orthonormal bases. For almost all co eg~ we def iner  (co)fj(co) andf(co)*  as 
finite linear combinations 

E @(rfT)(co)fk(co) and Z (P(sJ-")(co)fi(co) 
k e n  j e N  

respectively, for any i , j~N so if the product and �9 operation are extended 
linearly to the linear subspace d0(co) generated by {f~(CO)}i~N, then do(CO) 
is a Hilbert algebra whose completion is W(co), since we have that: 

(a) The algebraic equations that the sequence { f  (co)}i~N should satisfy 
for do(co) to be a Hilbert algebra follow from the equations that the 
sequence {xi}i~s satisfies in V (m. 

(b) It is easy to see that 

f , ( co )~(co)  = uxT(co)fj (co) 
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almost everywhere on fl, where Ux7 is the bounded operator induced by the 
left multiplication by x7 and 

q,(U~7 ) = { U~T(co)}~n 

from which, for almost all co cf~, the continuity of left multiplications in 
d0(co) follows. 

(c) Since Xk can be written as the limit of a sequence of finite linear 
combinations of terms in {xix;}(i,;)~ • r~ for any kEl~l in V (m by assumption, 
Theorem 3.4 shows that for almost all co~ff~, fk(co) can be written 
as the limit of a sequence of  finite linear combinations of terms 
in {fi(CO)fj(CO)}(i,j)ENxN for any k~N, from which the totality of 
{f(co)fj(co)}(iU)r215 in ~ (co )  follows. 

For co EO in which this procedure does not work, we can choose arbi- 
trarily a Hilbert algebra do(CO) whose completion is a separable complex 
Hilbert space. Now we have a family {d0(co)}o~n of Hilbert algebras, whose 
completions are denoted by ~e(co)'s. By taking d (co)  to be the Hilbert 
algebra of  all bounded elements in W(co) with respect to .~r for each 
co ~f~, we naturally obtain a Borel family q~(d) = {d(co)}o,~n whose associ- 
ated Borel field of complex Hilbert spaces over ~ is equivalent to ~9(~) .  
The dependence of @ ( d )  on our choice of  {yi}i~N(B) is superficial, as we 
will see. 

Lemma 5.1. By replacing {yi}~r~ by another sequence {y,-#};~ in 
V (m in the above discussion, we obtain another Borel field {d#(co)}o,~n 
of Hilbert algebras on O(~(f). Then {d(co)}o,~n and {d#(co)}o,~n are 
equivalent. 

Proof We can choose again another sequence {y~g#}~r~ in V (m such 
that yz#, .# =yi  for any ir while �9 # #  - "  # V (m. y2~+~-y; for iEl~ in The sequences 
{Y,},~s, {Y~#};~s, and {y~##},~r~ yield families {do(co)}o,~n, {d0#(co)}o,~n, 
and {d0##(co)}o,~n of  Hilbert algebras, which then give rise to Borel fields 
{d(co)}o,~n, {d#(co)}o,~n, and {d##(co)}~o~n of Hilbert algebras whose 
associated Borel fields of complex Hilbert spaces over fl are all equivalent 
to O ( ~ ) .  Then we can see easily that for almost all c o ~ ,  d0(co) and 
d# (co )  are dense subalgebras of do##(co). Therefore, for almost all co e ~ ,  
d (co)  = d # ( c o ) =  ag##(co), which is the desired conclusion. �9 

This lemma justifies our usage of the notation O ( d ) .  
The following theorem follows readily from the definitions. 

Theorem 5.2. Let ap(d)  = {d(co)}~o~n. Then O(U(~ ' ) )  and 

{ 
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are equivalent, where U(,~) is the von Neumann algebra left-associated with 
~4 in V ~ and U(J(o)))  is the von Neumann algebra left-associated with 
d(co)  for each co~f~. 

Proof Use Proposition 1 of Dixmier (1981, Part I, Chapter 5). 

Conversely, given a Borel field 91= {d(co)}~o~n of Hilbert algebras 
whose associated Borel field of complex Hilbert spaces over f~ is 
-5 :  ({~u,~: (c0)}~o~n, ~ ) ,  we can naturally construct the Hilbert algebra ~ ( ~ )  
in V (a) whose completion is ~ ( ~ )  in V <8) such that UJ(x)U?(y)=~(xy) and 
~'(x)* =~?(x*) in V (B~ for any x, y e ~  with x(co), y(co) Ed(c0) for all co eft .  
Then we have the following result. 

Lemma 5.3. ~(91) is full in V (B~. 

Proof For each x e ~ ,  i f~ (x )  is bounded in V (B~, then x(c0) is bounded 
for almost all co el2. Since .J(co) is full for any co E~, x(co)~s~(co) for almost 
all co,F2. Thence ~I'(x)~F(91) in V ~ .  �9 

Now the following theorem follows from the definitions. 

Theorem 5.4. For any full Hilbert algebra ~ '  in V ~ whose completion 
is a separable complex Hilbert space in V ~), ~ ( q ) ( ~ ) )  is isomorphic to 
in V (~. For any Borel field 9I of Hilbert algebras over ~,  ~(~(91)) is 
equivalent to 91. 

6. U N B O U N D E D  O P E R A T O R S  

To begin with, we review the rudiments of Stone's (1951) approach to 
unbounded operators by characteristic matrices, which reduces a large por- 
tion of the theory of unbounded operators to that of bounded operators. 
We recall that a (not necessarily bounded) operator T on a complex Hilbert 
space of, is called closed if its graph F(T) is closed in ~ @ ~ .  The operator 
Tis  called regular if it is closed and its domain ~ ( T )  is dense in ~ .  If Tis  
a closed operator on ~ ,  the projection corresponding to F(T) can be 
described by a 2 • 2 matrix (P0) of bounded operators Pu on ~ut~, which is 
called the characteristic matrix of T. Thus the operator T is the function 
Pijx~ + P12x2 ~ P21x~ + P22x2, where Xl and x2 are arbitrary elements of ~g,. 

The following well-known theorems are very useful. 

Theorem 6.1. A 2 • 2 matrix (Po) of bounded operators on a complex 
Hilbert space ~ is the characteristic matrix of a regular operator on ~ iff 
it satisfies the following conditions: 

1. P* -- Pji for i , j= 1, 2. 
2. E~=l PikPkj= Piy for i , j  = I, 2. 
3. The null projections N(Pj~) and N(I-P22)  are the zero operator. 
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Theorem 6.2. Let T be a regular operator on a complex Hilbert space 
with its adjoint T*. Then their characteristic matrices (P,j) and (Qu) are 
related by the following identities: (a) Q11 =I-P22,  (b) QI2=P12, (c) Q21 = 
PI2, and (d) Q22=I-P~l. 

Theorem 6.3. Let (Po) be the characteristic matrix of a regular operator 
T on a complex Hilbert space. Then we have the following: 

1. T i s  bounded iff Pll >rI for some r>0 .  
2. T is self-adjoint iff the operators Pu are self-adjoint and commute 

with each other. 
3. T is normal iff the operators P0 are normal and commute with each 

other. 

Theorem 6.4. Let (Po) be the characteristic matrix of a regular operator 
T on a complex Hilbert space. Then T has an inverse iff I - P ~  has an 
inverse. In this case the characteristic matrix of T -~ is given by (Qu), where 
QIl=P22, Q22=P2~, Q2, =PJ2, and Q22=P11. 

The proofs of the above theorems can be found in Nussbaum (1964) 
or Stone (1951). 

Let 55=({Jt~. (co))~o~n, ~ )  be a Borel field of complex Hilbert spaces 
over fL A family {T(og)}~o~, of regular operators T(co) on YtY(og) is called 
a field of regular operators on 55. Let (P~(co)) be the characteristic matrix 
of T(co) for each coEfL Then {T(og))~o~a is called Borel if the fields 
(P0.(co))o~n of bounded operators are Borel (i,j = 1, 2). 

Theorem 6.5. A field {T(co)}o,~n of regular operators is Borel iff the 
family {F(T(co))}o,~n is a Borel field of subspaces of 55 @ 55, where F(T(co)) 
is the graph of T(co) for each co~f~. 

Proof The proof follows from Proposition 4.20. �9 

Two Borel fields S and T of regular operators on 55 with characteristic 
matrices (Pij) and (Qo) are called equivalent if Po and Q0 are equivalent 
(i,j = 1, 2). 

The following theorem is attributed to Nussbaum (1964, Corollary 2). 

Theorem 6.6. Let {T(co)}o~a be a Borel field of regular operators on 
55. Then, for any Borel vector field x with x(co) E~(T(co)) for all co~12, the 
vector field w~f~ ~-~ T(co)x(co) is Borel. 

Since a bounded operator is a regular operator, we must verify the 
consistency of our definition of a Borel field of regular operators with that 
of a Borel field of bounded operators given in Section 4 in case that all the 
operators in a given field of regular operators happen to be bounded. 
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Theorem 6.7. Let {T(c0)}o~n be a field of bounded operators on iS. 
Then it is Borel as a field of bounded operators iff it is Borel as a field of 
regular operators. 

Proof The if part follows from Theorem 6.6. To see the only-if part, 
take a fundamental sequence {xi}i~N of Borel vector fields of ~5. Then 
F(T(c0)) is the closed linear span of the sequence {(xi(co), T(co)xi(oo))}i~N 
for any c0e~. Then {F(T(co))}~o~n is a Borel field of subspaces of 5 0  9, 
which implies, by Theorem 6.5, that T is Borel as a field of regular 
operators. �9 

Let T be a regular operator on a separable complex Hilbert space H 
in V (m. We would like to construct a Borel field (I)(T) of regular operators 
on the Borel field q ) ( ~ ) =  ({~f(~o)}~o~fl, ~ )  of complex Hilbert spaces over 
~.  Let (P~) be the characteristic matrix of T in V (B). Let 

O(Pzj) = { P o ( c o ) } ~ ,  i , j  = 1, 2 

By Proposition 4.15 and Corollary 4.25 we are certain that for almost all 
co ef~, the 2 • 2 matrix (Po(co)) is the characteristic matrix of a regular 
operator T(co) on Jr(co), which determines a Borel field 

�9 ( r )  = { 

up to equivalence. 
Conversely, given a Borel field 3;= {T(co)}o,~n of regular operators on 

a Borel field 5--({~(co)}~o~n, ~ )  of complex Hilbert spaces over ~,  we 
would like to construct a regular operator T ( Z )  on T ( ~ )  in V (~>. Let 
(Po(c0)) be the characteristic matrix of T(c0) for each coe~. The family 
{(P,j(c0))}~o~n of 2 x 2 matrices over ~2 determines a 2 • 2 matrix (P,j) of 
bounded operators in V (m such that 

P~=~g({Pu(o))}~o~n in V (B) for any i, j e N  

By Theorem 4.14, Proposition 4.15, and Corollary 4.25, it is easy to see that 
the 2 • 2 matrix (Po) satisfies the conditions in Theorem 6.1 in V (m, so that 
it determines a regular operator T ( Z )  on T(~5) in V (m. 

By Theorems 4.14 and 6.1, we have the following result. 

Theorem 6.8. For any regular operator T on a separable complex 
Hilbert space ~f  in V (m, we have T-T((I ) (T)) ,  provided we identify 
and T((1)(H)) by Theorem 4.9. Conversely, for any Borel field X of regular 
operators on a Borel field 5 of complex Hilbert spaces over ~,  (I)(T(~)) 
and Z are equivalent, provided we identify (I)(T(~)) and 5 by Theorem 4.9. 

It is well known that the adjoint of a regular operator is a regular 
operator. For any Borel field 3;= { T(c0)}~o~n of regular operators on a Borel 
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field -~=({~f(co)}~o~n, 6 )  of complex Hilbert spaces over s the family 
~Z* = { T(co)*} co ~ is seen to be a Borel field of regular operators by Theorem 
6.2. The same theorem gives directly the following result. 

Proposition 6.9. For any regular operator T on a separable complex 
Hilbert space ~ ,  in V (~), ~ (T*)  is equivalent to @(T)*. 

Now we would like to deal with the polar decomposition of a regular 
operator. First of  all, we need the following lemma on the range projection 
of a regular operator. 

Lemma 6.10. For any regular operator T on a separable complex 
Hilbert space ~,~ in V (~), let qb(T)= {T(co)}~o~n. Then r is equiva- 
lent {R(T(co))}~o~n. 

Proof Let q~(~4")= ({~f'(co)}o,~n, ~ ) .  Obviously the range space of T 
is that of  the bounded operator 7c2 restricted to the graph F(T)  of T in 
V (B), where re2 is the mapping ( x , y ) e~ |  ~-+yegff in V <B). Similarly, 
the range space of T(co) is that of the bounded operator zr2(co) restricted to 
the graph F(T(co)) of T(co) for each co eft ,  where we use the symbol rc2(co) to 
denote the mapping (x, y)EJ'f '(co)x 9f(co)~--~ ye~,~(co). Therefore R(T)= 
R(/rzIF(T)) in V (B), while R(T(co))=R(rc2(co)lF(T(co))) for any co~s 
Since ~(Jr2) is equivalent to {zr:(co)}~o~ and q)(F(T)) is equivalent to 
{F(T(co)))o~o, Theorem 4.24 gives the desired result. �9 

We recall that a (possibly unbounded) self-adjoint operator T is called 
positive if (Tx, x )>0  for any xeN(T).  

Lemma 6.11. Let T be a positive operator on a separable complex 
Hilbert space x/f in V (B) with q) (T)= {T(co)}~o~n; then T(co) is a positive 
operator on Xgf(co) for almost all coef~, where q~(~g')= ({Jf(c0)}~o~n, 6 ) .  

Proof By Proposition 6.9 we can see that T(co) is self-adjoint for almost 
all co~YL It remains to show that for almost all c0~Y~, (T(co)x, x)>_O for 
alI x~(T(co)) .  Let {(xi, Yi)}i~r~ be an orthonormal basic sequence in F(T)  
in V (B). Let {f}i~N be the sequence of Borel vector fields corresponding to 
{x;}i~r~ and {g~};EN be the sequence of  Borel vector fields corresponding to 
{ y i } ~ .  Then it is easy to see that for almost all copY,, the sequence 
{(f(co),  gi(CO))}i~N is an orthonormal basic sequence of F(T(co)). Let 5 be 
the totality of  sequences {S~}i~N of rational complex numbers si, all of  which, 
except for a finite number of them, are zero. It is easy to see that S is a 
countable set. Let us take arbitrarily {S~}i~N~5, and let {t~}~ be its corre- 
sponding sequence of  rational complex numbers in V (B). Since T is positive 
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in V (B), 

in V (B), which means that for almost all c 0 ~ ,  

Thence we are certain that for almost all co 6~ ,  

(T(co) (i~N &f  (co))' ;~N s~f/(cO))_>0 for all {Si}i~N65 

which gives the desired statement. �9 

Theorem 6.12. For any regular operator T on a separable complex 
Hilbert space 3r with polar decomposition T = UH in V (B), if ~ ( T ) =  
{T(co)}~n,  q)(U) = { U(co)}~o~n, and ~ ( H ) =  {H(co)}o,~n, then U(co)H(co) 
is the polar decomposition of T(co) for almost all c0~Y2. 

Proof. Since U is a partial isometry in V (B), UU* U = U in V (~). There- 
fore, by Proposition 4.15, U(co)U(co)*U(co)= U(co) for almost all c o ~ ,  
which means that U(co) is a partial isometry for almost all c0~Y2. Since H 
is a positive operator, Lemma 6.11 gives that H(co) is a positive operator 
for almost all c 0 ~ .  Since R(H)N(U) = 0 and R(H)+N(U)=I,  Proposi- 
tion 4.15, Corollary 4.25, and Lemma 6.10 give that R(H(co))N(U(co))= 0 
and R(H(co)) + N(U(co)) = / f o r  almost all co ~Y2, which means that the initial 
projection of  U(co) is the closure of the range of H. Since U is a partial 
isometry whose initial space contains the range of H, it is easy to see that 
�9 (UH) is equivalent to {U(co)H(co)}~o~n. �9 

We conclude this section with the function calculus of a (possibly 
unbounded) invertible positive self-adjoint operator which will be needed in 
the next section. We recall that a regular operator Tand a bounded operator 
S on the same complex Hilbert space J f  are said to commute if S T c  TS. As 
a special case of Theorem 5 of Stone (1951) we have the following result. 

Theorem 6.13. For any regular operator T and a bounded self-adjoint 
operator S with (Po) being the characteristic matrix of T, S and Tcommute  
iff S commutes with all Pij (i,j= 1, 2). 
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This gives the following result. 

Lemma 6.14. If a regular operator T and a projection E acting on 
a separable complex Hilbert space ~ commute in V (a), then T(co) and 
E(co) commute for almost all c0e~, where q~(T)={T(co)}o,~n and 
@(E) = {E(co)}o,~n. 

Proof This follows fromProposition 4.15 and Theorem 6.13. �9 

We recall (see, e.g., Kadison and Ringrose, 1983/1986, p. 351) that an 
increasing sequence {E,.}i~N of projections with ~/~N E~ = I is called a bound- 
ing sequence for a regular operator T if T and E~ commute for all ieN. It is 
easy to see that if a projection E commutes with a self-adjoint operator T 
andfis  a real-valued continuous function on R, then E commutes withf(T).  
Hence, if {E;}~N is a bounding sequence for a self-adjoint operator T, then 
{E~};~N is also a bounding sequence forf(T) .  We know well that in this case 
the union of all the subspaces corresponding to the E~ is a core of T, i.e., 
the minimal closed operator which is an extension of the restriction of T 
to the union of all the subspaces corresponding to the E; is T itself, for 
which the reader is referred to Lemma 5.6.14 of Kadison and Ringrose 
(1983/1986). 

Lemma 6.15. If {E;}~s is a bounding sequence for a regular operator 
T acting on a separable complex Hilbert space H in V (a), then 
{E~(co)}~N is a bounding sequence for T(co) for almost all c0ef~, where 
�9 (T) = {T(co)}o,~n and qb(E~)= {E~(co)}~o~n for all iEN. 

Proof By Lemma 6.14 we are certain that for almost all coefl, 
T(co) and Ei(co) commute (ieN). Therefore it suffices to show that 
Vi~NE~(CO)=L for almost all coe~). Let qb(Jf)=({~(co)}o~n,  | Let 
{x~}i~s be an orthonormal basic sequence of o~g in V (B) and {f};~N be its 
corresponding Borel field of orthonormal bases. Since the sequence 
{E~xj}i~s converges strongly to xy for any j~lq in V (n), we are certain by 
Theorem 3.4 that the sequence {Ei (co)J~ (co) }~N converges strongly to s (co) 
for a n y j e N  almost everywhere on ~. Since {J}(co)}y~N is an orthonormal 
basic sequence in 54~(co) for any coEf~, Vi~NE~(co)=I for almost all 
coe~. �9 

Theorem 6.16. Let f be a complex-valued continuous function on the 
positive real line ]0, +oe[, which induces naturally a continuous function 
from the positive half-line of the real numbers to the complex numbers in 
V (B) denoted by the same symbolf  Let T be a (possibly unbounded) invert- 
ible positive operator on a separable complex Hilbert space o~ in V (B). Then 
q)(f(T)) = {f(T(co))}~,~n up to equivalence, where q~(T)= {T(co)}o,~n. 
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Proof We remark, by Theorem 6.4 and Lemma 6.11, that T(co) is an 
invertible positive operator for almost all co eft .  Our argument is divided 
into two steps. 

1. First of all, we deal with the case that T is bounded in V (B). We 
define a sequence {/,},~N of open intervals as follows: 

(a) I0=I ,  = ~b. 
(b) I , = ] ~ , n [  for n>_2 

By using the Stone-Weierstrass theorem, we can choose a sequence 
{f,},~N of polynomials such that for n >_ 2, 

1 
I f (x) - f , (x ) l_<  - on I, 

n 

Let {gn}n~S be a sequence of polynomials in V (m corresponding externally 
to {f,},eN. Then f (T)  is the uniform limit of the sequence {gdT)},~s in 
V (m, while f(T(co)) is the uniform limit of the sequence {fdT(co))},~N for 
almost all coEf2. Since qfff,(T))={f,(T(co))}o~n up to equivalence, 
Theorem 4.16 applies and the case is completely treated. 

2. Now we deal with the general case. Let {E,},~s be a bounding 
sequence for T in V (m. Let ~(Yg)=({off(co)}o~,m ~) .  Then, by Lemma 
6.15, {E,(CO)},~N is a bounding sequence for T,(co) for almost all coEfl, 
where ~(E~)={E,(co)},o,n for each nEN. It is easy to see that 
�9 (TI E ~ ( ~ ) ) =  {T(co) I E,(Yt~(co))} up to equivalence. Then 

V ( f ( T ) )  = U (B)F(f(T)IE,(~)) = U (B)F(f(TIE.(~))) 
n E N  n ~ N  

while 

F(f(T(co)))  = U F(f(T(co)) IE, (co)(~(co)) )  
h e N  

= U F(f(T(CO)IE.(co)(~(co))) 
nffN 

for almost all coef~. By using (1), 

~(f(T[ E~(~))) = {f(T(co) lE,(co))}o,~n 

up to equivalence. Therefore 

@(f(T)) = {f(T(co))} o,~, 

up to equivalence. �9 
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We need a version of Theorem 6.16 with a parameter in later sections. 

Theorem 6.17. Let f be a complex-valued continuous function on 
]0, +o0[ • R, which induces naturally a continuous function from the direct 
product of the positive half-line of the real numbers and the set of all real 
numbers to the set of all complex numbers in V <m to be denoted by the 
same symbo l f  Let T be a (possibly unbounded) invertible positive operator 
on a separable complex Hilbert space ~ in V <m. Let t be a real number in 
V <m, which can be represented by a real-valued Borel function a on f~. Then 

�9 ( f (T ,  t)) = {f(T(c0), a(co))}~o~n 

up to equivalence, where q~(T)= { T(c0)}o~n. 

Proof First, deal with the case tha t f i s  restricted to ]0, +oo[ x [-n,  +n] 
for each neN, which can be treated as in the proof of Theorem 6.16. Then 
generalize it to the given f The details are left to the reader. �9 

To conclude this section, we comment that our approach can be gen- 
eralized to regular linear transformations (i.e., between different complex 
Hilbert spaces) without difficulty, which we will use in later sections. 

7. LEFT H I L B E R T  A L G E B R A S  

This section parallels Section 5 a great deal, but since the sharp opera- 
tion -~ is not bounded, we must use the theory of unbounded operators 
developed in the previous section in place of the theory of unbounded 
operators presented in Section 4. We use freely such standard notations 
of Takesaki (-1970) as S, F, J, A, Jr, A~ and d '  for the usual objects 
associated with d .  When we treat a family of left Hilbert algebras such as 
{d(c0)}o~n and we must distinguish, e.g., S for different d(co) 's,  we use 
such self-explanatory notations as S(c0). 

Let -~=({X(co)}o~n, ~ )  be a Borel field of complex Hilbert spaces 
over f~. A family {d (co )}o~  of achieved left Hilbert algebras d(co)  whose 
completions are ~f~(co) is called a Borel field of  left Hilbert algebras on 
and .~ is called its associated Borel field of complex Hilbert spaces over ~ if 
it satisfies the following conditions: 

I. For any Borel vector fields {(co)}~o~o, {y(co)}~o~ with x(co) and 
y(co) in W(co) for all coe~, the vector field {x(co)y(co)}o,~n is Borel. 

II. There is a sequence {xi}i~N of Borel vector fields such that for almost 
all coefl, xi(co)ed(co) and the sequence {(xi(co), x~(co)~)},~N is total in 
F(S(co)), where S(co) is the usual closed operator associated with the sharp 
operation. 
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Borel fields of right Hilbert algebras are defined similarly and their 
theory can be developed parallel with the theory of left Hilbert algebras. 

Proposition 7.1. In the above definition of a Borel field of left Hilbert 
algebras we have that the field {S(co)}o, En of regular operators is Borel. 

Proof This follows from Proposition 4.20. �9 

Proposition 7.2. Let {W(co)}o,~ be a Borel field of left Hilbert algebras 
on .5 = ( { ~ ( c o ) } o ~ ,  ~ ) .  Then for any Borel vector field {x(co)}~o~n with 
x(co) in ~'(co) for all wet) ,  the vector field {x(co)#}o~n is Borel. 

Proof This follows from Theorem 6.6 and Proposition 7.1, �9 

Two Borel fields {~(co)}o~n and {,~'2(co)}~,~, of left Hilbert algebras 
on Borel fields ({-YY,(co)}o,~n, ~ , )  and ({g4e, 2(co)}o~,, ~2) of complex Hil- 
bert spaces over fl  are called equivalent if there exist a meager Borel subset 
Z of f l  and a (Hilbert space) isomorphism (p~: ~ ( c o ) ~ 2 ( c o )  for each 

~ f l \ Z  such that: 

I. For every x e ~  there exists y ~ z  satisfying y(co)= cp~(x(co)) for 
any co ~ 2 \ Z .  

II. For every y ~ 2  there exists x ~  satisfying y(co)= f0~o(x(co)) for 
any co eY~\Z. 

III. For each coat i \Z,  ~0~o, if restricted to aY~(co), induces a bijective 
correspondence between W~(co) and s~'2(co) preserving the product and the 
sharp operation r162 

Let ~ be a separable complex Hilbert space in V (m and s~' be a left 
Hilbert algebra in V (m whose completion is ~ in V ~m. We would like to 
construct a Borel field q)(W) of left Hilbert algebras over f~. Let {y~}~s be 
a sequence of elements of ~', in V (m such that it is closed under the product 
and the sharp operation 7~- and it is dense in @# in V (m. Then the construc- 
tion of ~ ( d )  in Section 5 where so' is a Hilbert algebra in V (B) carries over 
literally up to the production of {~'0(co)}o~n except that every occurrence 
of the star operation * should be replaced by the sharp operation -r162 Let 
s~'(co) =d0(co)" for any coefL It is easy to see that the family {sg(co)}o~r~ 
is a Borel field of left Hilbert algebras whose associated Borel field of com- 
plex Hilbert spaces over fl  is equivalent to qb(jy). We denote {~,/(co)}o)~a 
by q~(sg). By Lemma 5.2 of Takesaki (1970) of Proposition 2.24 of Takesaki 
(1983, Chapter 1), Lemma 5.1 carries over with due modifications. Therefore 
q~(d) is determined uniquely up to equivalence. 

Conversely, let us suppose that we are given a Borel field 
9,1 = {s~(co)} ~o ~n of left Hilbert algebras whose associated Borel field of com- 
plex Hilbert spaces over ~ is 5 = ({oCf(co)}o~n, ~ ) .  Then we can naturally 
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construct the left Hilbert algebra re (d )  in V (m whose completion is qJ(5) 
in V (m such that W(x)qJ(y)=W(xy) and qJ(x)#=W(x ;e) in V (m for any 
x, y e ~  with x(co),y(co)ed(co) for all coe~. By replacing "full" by 
"achieved," Lemma 5.3 carries over. 

The following theorem follows from the definitions. 

Theorem 7.3. (a) For any achieved left Hilbert algebra d in V (m whose 
Hilbert space completion Jr is separable, we have W(q~(d))= d ,  provided 
we identify ~ and W(q)(~))  by Theorem 4.9. 

(b) For any Borel field 9.1 of left Hilbert algebras on a Borel field .~ of 
complex Hilbert spaces over ~q, O(W(9.I)) and 9.1 are equivalent, provided 
we identify q~(q~(.~)) and .~ by Theorem 4.9. 

Theorem 7.4. Let d be a left Hilbert algebra in V (m whose Hilbert 
space completion ~ff is separable. Then q~(d') = {d(co)'}~o~n up to equiva- 
lence, where ~ ( d ) =  {d(co)}~o~n. 

Proof Let ~ ( d ' )  = {~(co)}o~n. It is easy to see that ~)(co) cd'(co) for 
almost all coe~. Since/3(co) is dense in d'(co) with respect to the norm 
topology in the complex Hilbert space induced by the flat operation for 
almost all coef~ and N(co)=~(co)" by definition, the desired conclusion 
follows from Lemma 5.2 of Takesaki (1970). �9 

Theorem 7.5. For any left Hilbert algebra d in V (m whose Hilbert 
space completion is separable, q ~ ( ~ ( d ) ) =  {~(d(co))}o,~n up to equiva- 
lence, where q~(d)= {d(co)}o,~n. 

Proof It suffices to recall (in ZFC) that for any left Hilbert algebra d 
and any subalgebra d o  of d such that ~ is dense in d with respect to the 
norm topology in N#, we have ~ ( J { )  = s  for which see Theorem 3.1 
and Lemma 5.2 of Takesaki (1983). �9 

Theorem 7.6. For any left Hilbert algebra d in V (B) whose Hilbert 
space completion is separable, we have the following: 

1. q~(J) = {J(co)}~o~n and ~(A)= {A(co)}o~n up to equivalence. 
2. Let t be a real number in V (m, which can be represented by a real- 

valued Borel function f on ~. Then ~(o-,)= {af(o~)(co)}~oCn up to 
equivalence. 

Proof (1) Since q~(S) = {S(co)}o,~n up to equivalence and J and A ~/2 
[J(co) and A(co) 1/2] can be obtained as the polar decomposition of S 
[of S(co)l, we have, by Theorem 6.12, that (I)(J)={J(co)}~ozn and 
~(A 1/2) = {A(co)'/2}o~n up to equivalence. Therefore ag(A) = {A(co)}~o~n up 
to equivalence by Theorem 6.16. 

(2) This follows from Part 1 and Theorem 6.17. �9 
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8. THE COMMUTATION THEOREM 

The powerful machinery of left Hilbert algebras is available in our 
framework; we can establish the following commutation theorem rather 
easily, just as Tomita-Takesaki theory has settled the commutation theorem 
for tensor products of von Neumann algebras. 

Theorem 8.1. For any yon Neumann algebra d / a c t i n g  on a separable 
complex Hilbert space in V ~B), we have q)(d(') = {dg(o)) '}~o up to equiva- 
lence, where ~ (dd )  = {~(co)}~a. 

Before entering into the proof, the reader should understand that it is 
easy to show that if q~(d/')= {Y(co)}o, cn, then ,A/'(co)cdd(c0)' for almost 
all coef~. The reverse inclusion is much harder to show, for which our 
machinery plays a decisive role. 

Proof of the Theorem. We know in the theory of left Hilbert algebras 
that each yon Neumann algebra is isomorphic to the left von Neumann 
algebra of a left Hilbert algebra, for which the reader is referred, e.g., to 
Kadison and Ringrose (1983/1986, w 9.2) or Takesaki (1983, Chapter 2). 
We know also in theory of von Neumann algebras that an isomorphism 
between von Neumann algebras can be represented as the composition of 
an amplication, an induction, and a spatial isomorphism, for which the 
reader is referred to Dixmier (1981, Part I, Chapter 4, Theorem 3, pp. 61- 
62). By checking their proofs, we can see easily that these theorems still hold 
under our separability context. Therefore the von Neumann algebra dd in 
V (~) can be supposed, without loss of generality, to be of the form 
( Y ( d )  | ~ 2 ) ~ ,  where d is a left Hilbert algebra whose Hilbert space 
completion ~vt'l is separable, Ga(,~r is the left von Neumann algebra of d ,  
~r is the von Neumann algebra of scalar operators on a separable complex 
Hilbert space ,,gg- 2, and E is a projection belonging to the commutant of the 
von Neumann algebra A~'(sd)| (gr Therefore, by using Theorems 4.27, 
4.33, 7.4, and 7.5, we have 

= r | L(~VrY2))s) 

= ~ ( ( S e ( d  ') | L(~2))E)  

= {(~(d(co) ' )  0 L(wdco)))~(o~)}~, 

cr 



482 Nishimura 

where the above equalities should be understood as "up to equivalence" or 
an isomorphism case by case, ~(H2)=({245,2(co)}c~n, ~2), and L(~2)  
[L(J~(~2(~)), respectively] denotes the set of all bounded operators o n  ~'02 
[,:4~2(co), respectively]. �9 

This theorem gives the following intersection theorem. 

Theorem 8.2. For any yon Neumann algebras ~//~, ~ acting on the 
same separable complex Hilbert space in V (m, 

~ ( ~  ~ ~ )  = { ~ ( c o )  c~ ~ ( c o ) } ~ .  

up to equivalence, where q)(J/{)= { ~ ( c o ) } o ~  and q)(~Ar)= {~Ar(o))}~o~n. 

Proq[. By using Theorem 8.1, we have 

~ ( ~  n x )  = ~ ( ( ~ '  w ~ ' ) ' )  

= { (~ ' (co ) '  u X ( o ) ) ' ) ' } ~ n  

= { ~ ( c o )  ~ ~ ( c o ) } ~  

where the equality should be understood as "up to equivalence," �9 

The above two theorems give the following result. 

Theorem 8.3. For any von Neumann algebra ~ '  acting on a separable 
complex Hilbert space ~ in V ~m, we have q)(~e(jC{)) = {Y'(Jg(co))}~o~a up 
to equivalence, where ~(J/{) = {JCZ(co)}~o~n and Y ' ( J / )  [~(J/{(co))] denotes 
the center of ~ [of ~'(co)] .  

Proof Since ~ ( J g )  =J/{ n Jr in V (m and ~(Jg(co))  = J//(co) c~ ~{(co)' 
for any coef~, we have, by Theorems 8.1 and 8.2, that 

�9 ( ~ ( ~ ) )  = ~ ( ~  n ~ ' )  

= q ~ ( ~ ( ~ ( c o ) ) )  

where the equality should be understood as "up to equivalence." �9 

This theorem gives the following factor theorem. 

Theorem 8.4. For any von Neumann algebra ~/~ acting on a separable 
complex Hilbert space, JC{ is a factor in V (m iff ~#(co) is a factor for almost 
all c o ~ .  

Proof. This follows from Theorems 4.19 and 8.3. �9 
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9. THE SEMIFINITENESS THEOREM 

We owe much of the basic idea of  this section to Kallman (1971) and 
Lance (1975). 

Theorem 9.1. Let ~/~ be a factor acting on a separable complex Hilbert 
space Ne in V (B) and cr be an automorphism of ~ '  in V (m. Let 
O( Jg )  = {Jg(co)}~o~n and q~(cr) = {o-(c0)}o~a. If or(co) is inner for almost all 
coe~, then o- is inner in V (m. 

Proof Let ~(~gf )=({~(c0)}~o~a ,~) .  We use the techniques of 
Takesaki (1969). By Theorem 8.4, .////(co) is a factor for almost all coef2. 
We proceed as in the proof  of Proposition 3.2 of Lance (1975) to get a Borel 
field 11= {U(co)}o~n of bounded operators on ~ such that all U(co) are 
unitary operators inducing o-(co). It is easy to see that ~ ( U )  induces the 
automorphism cr in V (B). �9 

Now we can establish the following semifiniteness theorem rather easily 
by using Kallman's (1971) main theorem on inner automorphisms of yon 
Neumann algebras. 

Theorem 9.2. For a factor Jr acting on a separable complex Hilbert 
space in V (m, ~ is semifinite iff sr is semifinite for almost all coe~, 
where qb(jg) = {~(co)} o~a. 

Proof (1) First we deal with the if part. As in the proof of  Theorem 
8.1, in V (m the von Neumann algebra ~ can be assumed to be of the form 
5~(d )  for some left Hilbert algebra d whose Hilbert space completion is 
separable. Then sC{(co) is of the form f ( d ( c o ) )  for almost all coes with 
�9 ( d ) =  {d(c0)}, which follows from Theorem 7.5. To prove that S is 
semifinite in V (m, it suffices, by Takesaki (1970, w 14), to show that the 
associated modular automorphism group {a,},~R(B) is inner, for which it 
then suffices, by Kallman's (1971) main theorem, to show that or, is inner 
for each t~R (m in V (m. Let t be a real number in V (m, which can be 
represented by a real-valued Borei function f on ~.  Then, by Theorem 7.6, 
we have q~(o-,) = {o~r(~o)(co)}o~n. By Takesaki (1970, w 14) again, o-f(o~(co) is 
inner for almost all c0ef~, which implies, by Theorem 9.1, that 05 is inner 
in V (m. This completes the proof of  the if part. 

(2) The only-if part follows from the succeeding simple observation. 
We recall (cf. Dixmier, 1981, Part I, Chapter 6, w 7, Corollary of Proposition 
9) that a v o n  Neumann algebra is semifinite iff it is isomorphic to the 
left von Neumann algebra of a Hilbert algebra. Since ~ is semifinite by 
assumption, ~/~ can be supposed to be the von Neumann algebra U ( d )  left- 
associated with a Hilbert algebra d .  Then ~ (co )  is of the form U(d(co))  
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for almost all co eD with q)(~r = {~r as follows from Theorem 5.2. 
This implies that ~gg(co) is semifinite for almost all toeD. �9 

We notice that the only-if part in the above theorem still holds without 
the factor assumption. Indeed the proof for the only-if part is elementary. 
A similar elementary approach to the if part would break down, for although 
there exists a Hilbert algebra whose left von Neumann algebra is ~(co)  for 
almost all co ef t ,  there exists no elementary method to combine these Hilbert 
algebras into a Borel field of Hilbert algebras. This is why our machinery 
was more than an extravagant toy for pedants in the proof of the theorem. 

10. TYPE C O R R E S P O N D E N C E  THEOREMS 

Let ~ '  be a semifinite yon Neumann algebra acting on a separable 
complex Hilbert space in V <m, which shall be fixed throughout this section. 
Let @ ( J )  = {J(co)}o,~n. First of all, we deal with the semifinite case. 

Theorem 10.1. If ~ '  is discrete in V (m, then ~'(co) is discrete for almost 
all co e f~. 

Proof By Dixmier (198l, Part I, Chapter 8, Theorem 1), there exists 
an Abelian projection E of J /  with central support I in V <m. Let 
q~(E)={E(co)}~o~n. By Proposition 4.15 and Theorem 4.28, E(co) is an 
Abelian projection of Jg(co) with central support I for almost all co o f  2. 
Therefore, by Dixmier (1981, Part I, Chapter 8, Theorem 1) again, the 
desired result follows. �9 

Theorem 10.2. If ~ '  is properly infinite, then .////(co) is properly infinite 
for almost all co~f~. 

Proof By the halving theorem (see, e.g., Kadison and Ringrose, 1981/ 
1986, Lemma 6.3.3), there exists a projection E of Jr in V (m such that 
I , - ,E~I -E .  Let qb(E)= {E(co)}~o~. Then l~E(co)~I-E(co) for almost 
all coe~. Therefore J/r is properly infinite for almost all co~f~. �9 

Now we would like to show the following result. 

Theorem 10.3. If ~ '  is finite in V (B), then ~ is finite for almost 
all coc~. 

Proof Let d be a full Hilbert algebra in V <B~ whose Hilbert space 
completion is separable in V <m and whose left-associated von Neumann 
algebra U(sr is algebraically isomorphic to J / / i n  V (m. Using the corre- 
spondence between Hilbert algebras and faithful semifinite normal traces 
(see, e.g., Dixmier, i981, Part I, Chapter 6, w 2), we let ~o be the faithful 
semifinite normal trace on ~ '+  corresponding to the Hilbert algebra ~r in 
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V (B). By Dixmier (1981, Part I, Chapter 6, Proposition 9), we can assume 
that q~ is finite in V (8). Since q>(I) is finite in V (B), there exists an element a 
of ~r in V (B) such that I =  U~ and ~p(1) = (a, a) in V (B), where U~ is the 
bounded linear operator induced by the left multiplication of a on d .  Let 
�9 ( d )  = {d(co)},0~n and ~(a)  = {a(co)},o~n. By Theorem 5.2 we can identify 
~(co)  and U(d(co)) for almost all co E~. Let ~0,o be the faithful semifinite 
normal trace on ~'(co)+ corresponding to d(co)  for almost all co ~ .  Then 
it is easy to see that ~0,o(I) = (a(co), a(co)) for almost all co ~ ,  which means 
that ~0~(I) is fnite for almost all co ~ .  Therefore ~'(co) is finite for almost 
all co ~ .  �9 

Corollary 10.4. Let E be a projection of Jg in V (B) with 
(I)(E) = {E(co)},o~. If  E is a finite projection in V (B), then E(co) is finite for 
almost all co ~ .  

Proo f  Since ~(o/#E) = {~ up to equivalence by Theorem 
4.27, the desired result follows from Theorem 10.3. 

Theorem 10.5. If J/{ is continuous in V (B), then ~(co)  is continuous for 
almost all co e~ .  

Proo f  By Dixmier (1981, Part III, Chapter 2, Corollary 4 of Proposi- 
tion 7), there exists a decreasing sequence {E,},~s of finite projections of 
with central support I in V (B) such that E, ... E ,  - E,  + I for every n~l~l in 
V (m. Let ~(E~)= {E,(co)}~,~ for each n~N. Then, due to Proposition 4.15 
and Corollary t0.4, we can see easily that {E,(CO)},~N is a decreasing 
sequence of finite projections of J{(co) with central support I with 
E,(co) ~E, (co) -E,+l (co)  for any nEN almost everywhere on ~.  Therefore 
~(co)  is continuous for almost all copY,. �9 

From the preceding theorems in this section and Theorem 9.2, we have 
the following result. 

Theorem 10.6. If J{ is a von Neumann algebra of type i acting on a 
separable complex Hilbert space in V (B), then Jg(co) is a v o n  Neumann 
algebra of type i for almost all cocff~ ( i=I ,  II, I l ia) .  

From now on we assume that ~ '  is a factor in V (B), which implies, by 
Theorem 8.4, that Jg(co) is a factor for almost all co e~ .  In the proof of the 
following theorem we use two of the deepest results on the so-called Effros 
Borel structure attributed to Effros (1965) and Nielsen (1973). 

Theorem 10. 7. If ~ is of type III in V (B), then Jg(co) is of type III for 
almost all co eye. 

Proo f  Let X--- {coe~[Jr is a semifinite factor}. By Theorems 17.1 
and 21.1 of Nielsen (1973), X is a Borel set of ~.  Then, by the semifiniteness 
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theorem we have that 0= [0dg is semifinite]~ >_u?(X). Therefore X must be 
meager. �9 

By combining Theorems 10.6 and 10.7, we have the following result. 

Theorem 10.8. o~ is of type i in V (B~ iff J//(c0) is of type i for almost 
all c0Ef~ (i=I,  II, II~, III). 

11. A W*-MODULES AND A W*-ALGEBRAS 

Let 7/be a commutative A W*-algebra whose complete Boolean algebra 
is B and which shall be fixed throughout this section. Then 7/can be identified 
with the bounded part of complex numbers in V <B~. Ozawa (1984) has shown 
that the bounded part ~ ~) of every complex Hilbert space ~ in V ~R) is an 
A W*-module over 7/, which gives a bijective correspondence between the 
isomorphism classes of complex Hilbert spaces in V ~B) and the isomorphism 
classes of A W*-modules over 7/. Similarly Ozawa (1984) has shown that the 
bounded part d <~) of every yon Neumann algebra ~ acting on a complex 
Hilbert space ~ in V <B~ is a 7/-yon Neumann algebra acting on the A W*- 
module ~ ~ obtained from the complex Hilbert space ~ in V ~) in the 
above fashion, which gives an essentially bijective correspondence between 
the von Neumann algebras acting on the complex Hilbert space ~ in V <n~ 
and the Z-yon Neumann algebras acting on the A W*-module ~ ) .  

An A W*-module X over 7/ is called Z-separable if there exists a 
countable family (xn),,~N c X  such that for any x s X  and any positive number 
e, there exists a partition {b,},~N of unity of B with I[b,,x-b.x.[J < e for any 
heN. It is easy to see the following result. 

Lemma 11.1. For any complex Hilbert space ~ in V (B~, Jd ~ is separable 
in V <B) iff ~,ug ~) is 7/-separable. 

With these correspondence results in mind, our reduction theory for 
separable complex Hilbert spaces and von Neumann algebras acting on them 
in V (B~ renders immediately a reduction theory for Z-separable A W*- 
modules over Z and 7/-von Neumann algebras acting on them. In particular, 
the results in Sections 8-10 still hold in this A W*-context. Although alge- 
braic reduction theory for A W*-algebras has been studied by many authors 
(see, e.g., Berberian, 1972), it applies only to finite A W*-algebras. Our 
reduction theory has no preference with regard to types, but applies only to 
embeddable A W*-algebras satisfying a certain milder separability condition. 
Such a spatial reduction theory for A W*-algebras as ours seems completely 
n e w .  
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12. CONCLUDING REMARKS 

Theorem 9.1 was proved under the factor assumption. The problem of 
whether Theorem 9.1 still holds for general von Neumann algebras Jg acting 
on a separable complex Hilbert space in V ~B) remains open. If the answer is 
affirmative, Theorem 9.2 will hold without the factor assumption and the 
same method will probably enable us to drop the factor assumption in 
Theorem 10.8 as well as Theorem 10.7. What is needed is a Boolean-valued 
version of Lance (1976), which might be a sort of iterated forcing. 

Another interesting topic for future study is to extend our duality estab- 
lished in this paper to the nonseparable case. As far as complex Hilbert 
spaces are concerned, the problem is not difficult. Indeed, since Ozawa (1984) 
has already established the general duality between A W*-modules=over 
commutative A W*-algebras and Boolean-valued complex Hilbert spaces, 
Takemoto (1973) could be regarded as a solution. However, we have no 
idea of how to extend this approach to yon Neumann algebras. 
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